Advertisement

Rendiconti Lincei

, Volume 14, Issue 3, pp 161–177 | Cite as

Il ruolo dei processi a bassa pressione nella petrogenesi del magmatismo pleistocenico della Provincia Magmatica Romana: dati isotopici preliminari sul vulcano di Vico

  • Daniela Gasperini
Article
  • 54 Downloads

Riassunto

Così come quelle dei prodotti più basici della Provincia Magmatica Romana (PMR) e della Provincia Magmatica Toscana (PMT), le composizioni isotopiche dei magmi appartenenti alla serie evolutiva vicana mostrano significative similitudini con quelle tipiche della crosta continentale e sono da ricondurre essenzialmente alla loro sorgente mantellica, modificata da eventi di subduzione. Viceversa, i fenomeni di differenziazione ed assimilazione dell’incassante avvenuti a bassa pressione risultano aver giocato un ruolo secondario nella petrogenesi delle lave di Vico. L’evoluzione del sistema vulcanico vicano, dal raggiungimento di uno stato stazionario al successivo disequilibrio che porta allo svuotamento delle camere magmatiche e ai ripetuti collassi calderici, risulta strettamente legata alla geodinamica estensionale pleistocenica del settore interno dell’Appennino.

Role of low pressure processes in the petrogenesis of Pleistocene magmatism of the Roman Magmatic Province: preliminary isotope data on the Vico volcano

Abstract

The Vico volcanic series, similarly to the most basic rocks of the Roman and Tuscan Magmatic Provinces, show isotopic compositions that are typical of crust-derived material. This isotopic signature was likely acquired from an anomalous mantle source, strongly modified by the interaction with fluids and melts released by a subducted slab(s). By contrast, fractionation and assimilation processes at low pressure in the local continental crust appear to have played a secondary role even in the petrogenesis of the most evolved Vico volcanics. The achievement of a steady state and subsequent disequilibria of the Vico volcanic system could be related to the geodynamic history of the internal sector of the Apennines at Pleistocene time.

Key words

Potassic Magmatism Isotope Geochemistry Magma Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Appleton J.D., 1972.Petrogenesis of potassium-rich lavas from the Roccamonfina volcano, Roman region, Italy. J. Petrol., 13: 425–456.Google Scholar
  2. Ben Othman D., White W.M., Patchett J., 1989.The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett., 94: 1–21.CrossRefGoogle Scholar
  3. Bertagnini A., Sbrana A., 1986.Il vulcano di Vico: stratigrafia del complesso vulcanico e sequenze eruttive delle formazioni piroclastiche. Mem. Soc. Geol. It., 35: 699–713.Google Scholar
  4. Blichert-Toft J., Chauvel C., Albarède F., 1997.Separation of Hf and Lu for high-precision isotope analyis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol., 127: 248–260.CrossRefGoogle Scholar
  5. Cioni R., 1993.Il complesso di Bolsena e il vulcanismo alcalino-potassico del Lazio settentrionale. Tesi di dottorato, Dipartimento di Scienze della Terra, Università di Pisa.Google Scholar
  6. Clocchiatti R., Del Moro A., Gioncada A., Joron J.L., Mosbah M., Pinarelli L., Sbrana A., 1994.Assessment of a shallow magmatic system; the 1888–1890 eruption Volcano Island, Italy. Bull. Volcanol., 56: 466–486.CrossRefGoogle Scholar
  7. Conticelli S., D’Antonio M., Pinarelli L., Civetta L., 2002.Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and Southern Tuscany. Mineral. Petrol., 74: 189–222.CrossRefGoogle Scholar
  8. Foley S.F., Venturelli G., Green D.H., Toscani L., 1987.The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci. Rev., 24: 81–134.CrossRefGoogle Scholar
  9. Gasperini D., 1996.Petrogenesi del magmatismo ultrapotassico del vulcano di Vico. Tesi di laurea, Dipartimento di Scienze della Terra, Università di Pisa.Google Scholar
  10. Gasperini D., Blichert-Toft J., Bosch D., Del Moro A., Macera P., Albarède F., 2002.Upwelling of deep mantle material through a plate window: Evidence from the geochemistry of Italian basaltic volcanics. J. Geophys. Res., 107 (B12): 2367, doi: 10.1029/2001JB000418.CrossRefGoogle Scholar
  11. Heiken G.H., 1971.Tuff rings: Examples from Rock Christmas Lake Valley, South Central Oregon. J. Geophys. Res., 76: 5615–5626.CrossRefGoogle Scholar
  12. Hickey R.L., Frey F.A., Gerlach D.C., 1986.Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34–41° S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J. Geophys. Res., 91: 5963–5983.CrossRefGoogle Scholar
  13. Juteau M., Michard A., Albarède F., 1986.The Pb-Sr-Nd isotope geochemistry of some recent circum Mediterranean granites. Contrib. Mineral. Petrol., 92: 331–340.CrossRefGoogle Scholar
  14. Keller J., 1983.Potassic lavas in the orogenic volcanism of the Mediterranean area. J. Volcanol. Geotherm. Res., 18: 321–335.CrossRefGoogle Scholar
  15. Laurenzi M.A., Villa I.M., 1987.40Ar/39Ar chronostratigraphy of Vico ignimbrites. Per. Mineral., 56: 285–293.Google Scholar
  16. Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettini R., 1986.A chemical classification of volcanic rocks based on the Total Alkali-silica diagram. J. Petrol., 27/3: 745–750.Google Scholar
  17. Locardi E., 1985.Neogene and Quaternary Mediterranean volcanism: the Tyrrhenian example. In:D.J. Stanley, F.C. Wezel (eds.),Geological evolution of the Mediterranean basin. Springer-Verlag, New York: 273–291.Google Scholar
  18. Lorenz V., 1974.Vesciculated tuffs and associated features. Sedimentology, 21: 273–291.CrossRefGoogle Scholar
  19. Manhes G., Minster J.F., Allègre C.J., 1978.Comparative uranium-thorium-lead and rubidium-strontium study of the Saint Severin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett., 39: 14–24.CrossRefGoogle Scholar
  20. Mattias P.P., Ventriglia V., 1970.La regione vulcanica dei Monti Sabatini e Cimini. Mem. Soc. Geol. It., 9: 331–384.Google Scholar
  21. Meletti C., Patacca E., Scandone P., 2000.Construction of a seismotectonic model: the case of Italy. Pure Appl. Geophys., 157: 11–35.CrossRefGoogle Scholar
  22. Peccerillo A., 1999.Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology, 27: 315–318.CrossRefGoogle Scholar
  23. Pinarelli L., Poli G., Santo A., 1989.Geochemical characterization of recent volcanism from the tuscan magmatic province (Central Italy): the Roccastrada and San Vincenzo centers. Per. Mineral., 58: 67–96.Google Scholar
  24. Sartori R., 1989.Evoluzione neogenica-recente del bacino tirrenico e i suoi rapporti con la geologia delle aree circostanti. G. Geol., s. 3, 51: 1–30.Google Scholar
  25. Serri G., Innocenti F., Manetti P., 1993.Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics, 233: 117–147.CrossRefGoogle Scholar
  26. Sollevanti F., 1983.Geological, volcanological and tectonic setting of the Vico-Cimino area, Italy. J. Volcanol. Geotherm. Res., 17: 203–217.CrossRefGoogle Scholar
  27. Sun S.S, McDonough W.F., 1989.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:A.D. Saunders, M.J. Norris (eds.),Magmatism in the ocean basins. Geol. Soc. Spec. Pub., London: 313–345.Google Scholar
  28. Thorpe R.S., Francis P.V., O’Callaghan L., 1984.Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philos. Trans. R. Soc. London, Ser. A, 310: 675–692.CrossRefGoogle Scholar
  29. Vollmer R., 1976.Rb-Sr and U-Th-Pb systematics of alkaline rocks: the alkaline rocks from Italy. Geoch. Cosmoch. Acta, 40: 283–295.CrossRefGoogle Scholar
  30. Wendlandt R.F., Eggler D.H., 1980.The origins of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO 4-SiO2-H2)-CO2 at high pressure and high temperature. Am. J. Sci., 280: 421–458.Google Scholar
  31. White W.M., Albarède F., Télouk P., 2000.High-precision analysis of Pb isotopic ratios using muti-collector ICP-MS. Chem. Geol., 167: 257–270.CrossRefGoogle Scholar
  32. Wyllie P.J., Sekine T., 1982.The formation of mantle phlogopite in subduction zone hybridization. Contrib. Mineral. Petrol., 79, 375–380.CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di PisaPisa

Personalised recommendations