Rendiconti Lincei

, 17:221 | Cite as

Conformational spread: The propagation of allosteric states in large multiprotein complexes



The phenomenon of allostery is conventionally described for small symmetrical oligomeric proteins such as hemoglobin. Here we review experimental evidence from a variety of systems — including bacterial chemotaxis receptors, muscle ryanodine receptors, and actin filaments — showing that conformational changes can also propagate through extended lattices of protein molecules. We explore the statistical mechanics of idealized linear and two-dimensional arrays of allosteric proteins and show that, as in the analogous Ising models, arrays of closely packed units can show large-scale integrated behavior. We also discuss proteins that undergo conformational changes driven by the hydrolysis of ATP and give examples in which these changes propagate through linear chains of molecules. We suggest that conformational spread could provide the basis of a solid-state «circuitry» in a living cell, able to integrate biochemical and biophysical events over hundreds of protein molecules.

Key words

Cell signaling Free energy Ising model Cooperativity Hemoglobin 


  1. [1]
    J. MonodJ. WymanJ.P. Changeux,On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 12, 1965, 88–118.Google Scholar
  2. [2]
    D.E. KoshlandG. NéméthyD. Filmer,Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 5, 1966, 365–385.CrossRefGoogle Scholar
  3. [3]
    L. Stryer,Biochemistry. Freeman, New York 1995.Google Scholar
  4. [4]
    J.-P. ChangeuxS.J. Edelstein,Allosteric receptors after 30 years. Neuron, 21, 1998, 959–980.CrossRefGoogle Scholar
  5. [5]
    J.-P. ChangeuxJ. ThiéryY. TungC. Kittel,On the cooperativity of biological membranes. Proc. Natl. Acad. Sci. USA, 57, 1967, 335–341.CrossRefGoogle Scholar
  6. [6]
    C. BohrK. HasselbalchA. Krogh,Ueber einem in biologische Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand. Arch. Physiol., 16, 1904, 402–412.Google Scholar
  7. [7]
    A.V. Hill,The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J., 7, 1913, 471–480.Google Scholar
  8. [8]
    A. BrenM. Eisenbach,How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J. Bacteriol., 182, 2000, 6865–6873.CrossRefGoogle Scholar
  9. [9]
    D. Bray,Bacterial chemotaxis and the question of gain. Proc. Natl. Acad. Sci. USA, 99, 2002, 7–9.Google Scholar
  10. [10]
    V. SourjikH.C. Berg,Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 99, 2002, 123–127.CrossRefGoogle Scholar
  11. [11]
    D. BrayM.D. LevinC.J. Morton-Firth,Receptor clustering as a cellular mechanism to control sensitivity. Nature, 393, 1998, 85–88.CrossRefGoogle Scholar
  12. [12]
    T.A.J. DukeD. Bray,Heightened sensitivity of a lattice of membrane receptors. Proc. Natl. Acad. Sci. USA, 96, 1999, 10104–10108.CrossRefGoogle Scholar
  13. [13]
    Y. ShiT. Duke,Cooperative model of bacterial sensing. Phys. Rev. E, 58, 1998, 6399–6406.CrossRefGoogle Scholar
  14. [14]
    P. AmesC.A. StuddertR.H. ReiserJ.S. Parkinson,Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. USA, 99, 2002, 7060–7065.CrossRefGoogle Scholar
  15. [15]
    J.R. GestwickiL.L. Kiessling,Inter-receptor communication through arrays of bacterial chemoreceptors. Nature, 415, 2001, 81–84.CrossRefGoogle Scholar
  16. [16]
    K.K. KimH. YokotaS.-H. Kim,Fourhelical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature, 400, 1999, 787–792.CrossRefGoogle Scholar
  17. [17]
    N.R. FrancisM.N. LevittT.R. ShaikhL.A. MelansonJ.B. StockD.J. DeRosier,Subunit organization in a soluble complex of Tar, CheW, and CheA by electron microscopy. J. Biol. Chem., 277, 2002, 36755–36759.CrossRefGoogle Scholar
  18. [18]
    S.-H. KimW. WangK.K. Kim,Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity. Proc. Natl. Acad. Sci. USA, 99, 2002, 11611–11615.CrossRefGoogle Scholar
  19. [19]
    T.S. ShimizuN. Le NovèreM.D. LevinA.J. BeavilB.J. SuttonD. Bray,Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat. Cell Biol., 23, 2000, 792–796.Google Scholar
  20. [20]
    A.M. KeleshianR.O. EdesonG.-J. LiuB.W. Madsen,Evidence for cooperativity between nicotinic acetylcholine receptors in patch clamp records. Biophys. J., 78, 2000, 1–12.Google Scholar
  21. [21]
    E. YeramianA. TrautmannP. Claverie,Acetylcholine receptors are not functionally independent. Biophys. J., 50, 1986, 253–263.Google Scholar
  22. [22]
    K. ManivannanS.V. RamananR.T. MathiasP.R. Brink,Multichannel recordings from membranes which contain gap junctions. Biophys. J., 61, 1992, 216–227.Google Scholar
  23. [23]
    B.S. KhakhX. ZhouJ. SydesJ.J. GalliganH.A. Lester,State-dependent crossinhibition between transmitter-gated cation channels. Nature, 406, 2000, 405–410.CrossRefGoogle Scholar
  24. [24]
    F. LiuQ. WanZ.B. PristupaX.M. YuY.T. WangH.B. Niznik,Direct protein-protein coupling enables crosstalk between dopamine D5 and [gamma]-aminobutyric acid A receptors. Nature, 403, 2000, 274–280.CrossRefGoogle Scholar
  25. [25]
    S.O. MarxK. OndriasA.R. Marks,Coupled gating between individual skeletal muscle Ca 2+ release channels (ryanodine receptors). Science, 281, 1998, 818–821.CrossRefGoogle Scholar
  26. [26]
    S.O. MarxJ. GaburjakovaM. GaburjakovaC. HenriksonK. OndriasA.R. Marks,Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res., 88, 2001, 1151–1158.CrossRefGoogle Scholar
  27. [27]
    E.A. SobieK.W. DillyJ.S. CruzW.J. LedererM.S. Jafri,Termination of cardiac Ca 2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys. J., 83, 2002, 59–78.Google Scholar
  28. [28]
    D.S. GoodsellA.J. Olson,Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct., 29, 2000, 105–153.CrossRefGoogle Scholar
  29. [29]
    H.C. Berg,The rotary motor of bacterial flagella. Annu. Rev. Biochem., 72, 2003, 19–54.CrossRefGoogle Scholar
  30. [30]
    P. CluzelM. SuretteS. Leibler,An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science, 287, 2000, 1652–1657.CrossRefGoogle Scholar
  31. [31]
    V. SourjikH.C. Berg,Binding of the Escherichia coliresponse regulator CheY to its target measured in vivoby fluorescence energy transfer. Proc. Natl. Acad. Sci. USA, 99, 2002, 12669–12674.CrossRefGoogle Scholar
  32. [32]
    T.A.J. DukeN. Le NovèreD. Bray,Conformational spread in a ring of proteins: a stochastic view of allostery. J. Mol. Biol., 308, 2001, 541–553.CrossRefGoogle Scholar
  33. [33]
    D. Bray,Cell Movements. Garland Publ., New York 2001, 372 pp.Google Scholar
  34. [34]
    C.J. Brokaw,Computer simulation of flagellar movements VIII: Coordination of dynein by local curvature control can generate helical bending waves. Cell Motil. Cytoskelet., 53, 2002, 103–124.CrossRefGoogle Scholar
  35. [35]
    M.J. WargoE.F. Smith,Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonasflagella. Proc. Natl. Acad. Sci. USA, 100, 2003, 137–142.CrossRefGoogle Scholar
  36. [36]
    C.R. Calladine,Construction of bacterial flagella. Nature, 255, 1975, 121–124.CrossRefGoogle Scholar
  37. [37]
    F.A. SamatoyK. ImadaS. NagashimaF. VondervisztT. Kumasaki et al., Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature, 410, 2001, 331–337.CrossRefGoogle Scholar
  38. [38]
    R.M. MacnabM.K. Ornston,Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol., 112, 1997, 1–30.CrossRefGoogle Scholar
  39. [39]
    S. TrachtenbergD. StolesE. BullittD. DeRosier,Actin and flagellar filaments: two helical structures with variable twist. Ann. NY Acad. Sci., 483, 1986, 89–99.CrossRefGoogle Scholar
  40. [40]
    A. McGoughB. PopeW. ChiuA. Weeds,Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol., 138, 1997, 771–781.CrossRefGoogle Scholar
  41. [41]
    F. RessadD. DidryG.-X. XiaY. HongN.-H. Chua et al.,Kinetic analysis of the interactions of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins. J. Biol. Chem., 278, 1998, 20894–20902.CrossRefGoogle Scholar
  42. [42]
    M. Nyåkern-MeazzaK. NarayanC.E. SchuttU. Lindberg,Tropomyosin and gelsolin cooperate in controlling the microfilament system. J. Biol. Chem., 277, 2002, 28774–28779.CrossRefGoogle Scholar
  43. [43]
    E. ProchniewiczQ. ZhangP.A. JanmeyD.D. Thomas,Cooperativity in Factin: Binding of gelsolin at the barbed end affects structure and dynamics of the whole filament. J. Mol. Biol., 260, 1996, 756–766.CrossRefGoogle Scholar
  44. [44]
    E. NogalesN. Grigorieff,Molecular machines: putting the pieces together. J. Cell Biol., 152, 2001, F1–10.CrossRefGoogle Scholar
  45. [45]
    T.L. Hill,Theoretical formalism for the sliding filament model of contraction of striated muscle: Part I. Prog. Biophys. Mol. Biol., 28, 1975, 267–340.CrossRefGoogle Scholar
  46. [46]
    J.T. FinerR.M. SimmonsJ.A. Spudich,Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature, 368, 1994, 113–119.CrossRefGoogle Scholar
  47. [47]
    J.W.S. Pringle,Stretch activation of muscle: function and mechanism. Proc. R. Soc. London Ser. B, 201, 1978, 107–130.CrossRefGoogle Scholar
  48. [48]
    T. Duke,Cooperativity of myosin molecules through strain-dependent chemistry. Philos. Trans. R. Soc. London B, 355, 2000, 529–538.CrossRefGoogle Scholar
  49. [49]
    G. OsterH. Wang,Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochim. Biophys. Acta, 1458, 2000, 482–510.CrossRefGoogle Scholar
  50. [50]
    S.A. EndowH. Higuchi,A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature, 406, 2000, 913–916.CrossRefGoogle Scholar
  51. [51]
    M. BadoualF. JülicherJ. Prost,Bidirectional cooperative motion of molecular motors. Proc. Natl. Acad. Sci. USA, 99, 2000, 6696–6707.CrossRefGoogle Scholar
  52. [52]
    T. Duke,Push or pull? Teams of motor proteins have it both ways. Proc. Natl. Acad. Sci. USA, 99, 2002, 6521–6523.CrossRefGoogle Scholar
  53. [53]
    R.D. Vale,AAA proteins: lords of the ring. J. Cell Biol., 150, 2000, F13–19.CrossRefGoogle Scholar
  54. [54]
    K. Luby-Phelps,Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol., 192, 2000, 189–221.Google Scholar
  55. [55]
    A.J. ManiotisC.S. ChenD.E. Ingber,Demonstration of mechanical connections between integrins, cytoskeletal filaments and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA, 94, 2000, 849–854.CrossRefGoogle Scholar
  56. [56]
    R.O. Hynes,Integrins: bidirectional, allosteric signaling machines. Cell, 110, 2002, 673–687.CrossRefGoogle Scholar
  57. [57]
    L. MahadevanP. Matsudaira,Motility powered by supramolecular springs and ratchets. Science, 288, 2000, 95–99.CrossRefGoogle Scholar
  58. [58]
    C. ChanA.J.T. GeorgeJ. Stark,Cooperative enhancement of specificity in a lattice of T cell receptors. Proc. Natl. Acad. Sci. USA, 98, 2001, 5758–5763.CrossRefGoogle Scholar
  59. [59]
    T. Bickel — R. Bruinsma,Focal adhesion: physics of a biological sensor. 2003. Scholar
  60. [60]
    M. Eigen,Kinetics of reaction control and information transfer in enzymes and nucleic acids. Nobel Symp., 5, 1967, 333–369.Google Scholar
  61. [61]
    E.R. HenryC.M. JonesJ. HofrichterW.A. Eaton,Can a two-state allosteric model explain hemoglobin kinetics? Biochemistry, 36, 1997, 6511–6528.CrossRefGoogle Scholar
  62. [62]
    V. SourjikH.C. Berg,Functional interactions between receptors in bacterial chemotaxis. Nature, 428, 2004, 437–441.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of AnatomyUniversity of CambridgeCambridgeUnited Kingdom
  2. 2.Department of PhysicsUniversity of Cambridge Cavendish LaboratoryCambridgeUnited Kingdom

Personalised recommendations