Advertisement

Bulletin of Materials Science

, Volume 23, Issue 6, pp 491–494 | Cite as

Thermal expansion behaviour of barium and strontium zirconium phosphates

  • P. Srikari Tantri
  • K. Geetha
  • A. M. Umarji
  • Sheela K. Ramasesha
Oxide Ceramics

Abstract

Ba1.5-xSrxZr4P5SiO24 compounds withx = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to\(R\bar 3\) space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), withx = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly,x = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign.X = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials

Keywords

Coefficient of thermal expansion low thermal expansion NZP ceramic dilatometer anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alamo J and Roy R1986J. Mater. Sci. 21 444CrossRefGoogle Scholar
  2. Breval E and Agrawal D K 1995Br. Ceram. Soc. 94 27Google Scholar
  3. Goodenough J B and Hong H Y-P 1976Mater. Res. Bull. 11 203CrossRefGoogle Scholar
  4. Harshe G and Agrawal D K 1994J. Am. Ceram. Soc. 77 1965CrossRefGoogle Scholar
  5. Hong H Y-P 1976Mater. Res. Bull. 11 173CrossRefGoogle Scholar
  6. Huang C, Agrawal D K, McKinstry H A and Limaye S Y 1994J. Mater. Res. 9 2005CrossRefGoogle Scholar
  7. Limaye S Y, Agrawal D K and McKinstry HA 1987J. Am. Ceram. Soc. 70 C-232CrossRefGoogle Scholar
  8. Limaye S Y, Agrawal D K and Roy R 1991J. Mater. Sci. 26 93CrossRefGoogle Scholar
  9. Ota T and Yamai I 1986J. Am. Ceram. Soc. 69 1CrossRefGoogle Scholar
  10. Ota T, Jin P and Yamai I 1989J. Mater. Sci. 24 4239CrossRefGoogle Scholar
  11. Senbhagaraman S, Guru Row T N and Umarji A M 1993J. Mater. Chem. 3 309CrossRefGoogle Scholar
  12. Shanmugam S, Stinton D P, Cavin O B, Hubbard C R and Limaye S Y 1994J. Mater. Sci. Lett. 13 1326Google Scholar
  13. Srikanth V, Subbarao E C, Agrawal D K, Huang C, Roy R and Rao G V 1991J. Am. Ceram. Soc. 74 365CrossRefGoogle Scholar
  14. Umarji A M, Senbhagaraman S and Radhika MVR 1997J. Instrum. Soc. Ind. 27 109Google Scholar
  15. Yamai I and Ota T 1993J. Am. Ceram. Soc. 76 487CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2000

Authors and Affiliations

  • P. Srikari Tantri
    • 1
  • K. Geetha
    • 1
    • 2
  • A. M. Umarji
    • 1
    • 2
  • Sheela K. Ramasesha
    • 1
  1. 1.Materials Science DivisionNational Aerospace LaboratoriesBangaloreIndia
  2. 2.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations