Bulletin of Materials Science

, Volume 23, Issue 6, pp 453–460 | Cite as

Hydrothermal synthesis of fine oxide powders

  • Shigeyuki Sōmiya
  • Rustum Roy
Materials Synthesis


This is a review and an overview on hydrothermal synthesis of fine oxide powders. The term hydrothermal today includes methods which involve water at pressures (from 1 atm-several kilobars) and high temperatures from 100–10,000°C. Hydrothermal is one of the best methods to produce pure fine oxide powders. The authors describe (i) hydrothermal decomposition, (ii) hydrothermal metal oxidation, (iii) hydrothermal reaction, (iv) hydrothermal precipitation and hydrothermal hydrolysis, (v) hydrothermal electrochemical, (vi) reactive electrode submerged arc, (vii) hydrothermal microwave, (viii) hydrothermal sonochemical, etc and also ideal and real powders


Hydrothermal Synthesis fine powders Oxide powders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autoclave Engineers, CatalaugeGoogle Scholar
  2. Brice L C 1986Hydrothermal growth, crystal growth processes (Glasgow: Blackie Halsted Press) p. 194Google Scholar
  3. Brinker C Jet al (eds) 1984Better ceramics through chemistry I (Amsterdam: North Holland) p. 398Google Scholar
  4. Byrappa K (ed.) 1991Hydrothermal growth of crystals, progress in crystal growth and characterization of materials (Oxford: Pergamon Press)Google Scholar
  5. Chemical Society of Japan (ed.) 1985Ultral fine powders—Science and application (Tokyo: Gakkai Publication Centre) p. 211Google Scholar
  6. Dawson W J 1988Am. Ceram. Soc. Bull. 67 1973Google Scholar
  7. Demianets L Net al 1984Growth and synthesis in hydrothermal solutions, Modern crystallography III, Crystal growth (eds) A A Chernovet al (Berlin: Springer-Verlag) p. 380Google Scholar
  8. Eitel W 1966Silicate science (New York: Academic Press)Vol. IV p. 149Google Scholar
  9. Ganguli D and Chatterjee M 1997Ceramic powder preparation: A handbook (The Netherlands: Kluwer Academic Publishers) p. 221Google Scholar
  10. Haberko Ket al 1991J. Am. Ceram. Soc. 74 2622CrossRefGoogle Scholar
  11. Haberko Ket al 1995J. Am. Ceram. Soc. 78 3397CrossRefGoogle Scholar
  12. Hishinuma Ket al 1988Advances in ceramics, Science and technology of zirconia III (Westerville, Ohio: Am. Ceram. Soc.) Vol.24 p. 201Google Scholar
  13. Ismail M G M U and Sōmiya S 1983Proc. Int. symp. on hydrothermal reactions (Tokyo: Gakujutsu Bunken Fukyu Kai) p. 669Google Scholar
  14. Johnson Jr. D W 1987Advances in ceramics (eds) G L Messinget al (Westerville, Ohio: Am. Ceram. Soc.)Vol. 21 p. 3Google Scholar
  15. Kato A and Yamaguchi T 1983New ceramic powder handbook (Tokyo: Tokyo Science Forum) p. 558Google Scholar
  16. Komarneni Set al 1986Advanced ceramic materials (Westerville, Ohio: Am. Ceram. Soc.)1 p. 87Google Scholar
  17. Komarneni Set al 1992Mater. Res. Bull. 27 1393CrossRefGoogle Scholar
  18. Komarneni Set al 1993J. Mater. Res. 8 3176CrossRefGoogle Scholar
  19. Komarneni Set al 1994J. Mater. Chem. 4 1903CrossRefGoogle Scholar
  20. Komarneni Set al 1995J. Mater. Res. 10 1687CrossRefGoogle Scholar
  21. Kumar A and Roy R 1988J. Mater. Res. 3 1373CrossRefGoogle Scholar
  22. Kumar A and Roy R 1989J. Am. Ceram. Soc. 72 354CrossRefGoogle Scholar
  23. Laudise R A 1970Hydrothermal growth, The growth of single crystals (New Jersey: Prentice Hall Inc.) p. 275Google Scholar
  24. Lobachev A N (ed.) 1971Hydrothermal synthesis of crystals (New York: Consultant Bureau) p. 152Google Scholar
  25. Messing G Let al (eds) 1987Ceramic powder science, Advances in ceramics (Westerville, Ohio: Am. Ceram. Soc.)Vol. 21 p. 825Google Scholar
  26. Milia A M 1995Sonochemistry and cavitation (Luxemburg: Gordon and Breach Publishers) p. 543Google Scholar
  27. Morey G W 1953J. Am. Ceram. Soc. 36 279CrossRefGoogle Scholar
  28. Nishizawa Het al 1982J. Am. Ceram. Soc. 65 343CrossRefGoogle Scholar
  29. Parr Instrument Co. CatalogueGoogle Scholar
  30. Rabenau A 1985Angew. Chem. Int. Ed. Engl. 24 1026CrossRefGoogle Scholar
  31. Riman R 1999The textbook ceramic powder technologies, 101st Annual meeting (Westerville, Ohio: Am. Ceram. Soc.)Google Scholar
  32. Rouxed Jet al 1994Soft chemistry routes to new materials— Chemie douce (Switzerland: Trans. Tech.) p. 394Google Scholar
  33. Sōmiya S (ed.) 1983Proc. first int. symp. on hydrothermal reactions (Tokyo: Gakujutsu Bunken Fukyu Kai) p. 965Google Scholar
  34. Sōmiya S (ed.) 1989Hydrothermal reactions for material science and engineering, An overview of research in Japan (London: Elsevier Applied Science) p. 505Google Scholar
  35. Sōmiya S 1994Advanced materials 1993, VI Trans. MRS-Japan frontiers in materials science and engineering (Amsterdam: Elsevier Science BV) Vol.19B p. 1105Google Scholar
  36. Sōmiya S and Akiba T 1999Trans. MRS-Tokyo, Japan 24 531Google Scholar
  37. Sōmiya Set al 1991Hydrothermal growth of crystals, Progress in crystal growth and characterization of materials (Oxford: Pergamon Press)Vol. 21 p. 195Google Scholar
  38. Segal D 1989Chemical synthesis of advanced ceramic materials (Cambridge: Cambridge University Press) p. 182Google Scholar
  39. Stambaugh E P 1983New/improved ceramic, magnetic and electronic oxides by hydrothermal processing, 85th Annual meeting (Chicago, II: Am. Ceram. Soc.)Google Scholar
  40. Tani Eet al 1981J. Am. Ceram. Soc. 64 C-181CrossRefGoogle Scholar
  41. Tani Eet al 1983J. Am. Ceram. Soc. 66 11CrossRefGoogle Scholar
  42. Tem-Press Div. Leco Corp. CatalogueGoogle Scholar
  43. Toraya Het al 1984Advances in ceramics, Science and technology of zirconia II (Westerville, Ohio: Am. Ceram. Soc.)Vol. 12 p. 806Google Scholar
  44. Veale C R 1972Fine powder preparation, Properties and uses (London: Applied Science Publishers) p. 147Google Scholar
  45. Vincenzini P (ed.) 1983Ceramic powders (Amsterdam: Elsevier Scientific Co.) p. 1025Google Scholar
  46. Walker A C 1953J. Am. Ceram. Soc. 36 250CrossRefGoogle Scholar
  47. Yoo S Eet al 1988Sintering 87 (eds) S Sōmiyaet al (London: Elsevier Applied Science) p. 108Google Scholar
  48. Yoshimura M and Sōmiya S 1984 Rep. Res. Lab. Eng. Mat. Tokyo Inst. of Technology No. 9 p. 53Google Scholar
  49. Yoshimura Met al 1981Preparation of zirconia fine powders by the reactions between zirconium metal and high temperature-high pressure solutions, 8th AIRAPT conf. 1988 (Sweden: 8th AIRAPT Committee) p. 793Google Scholar
  50. Yoshimura Met al 1987 Rep. Res. Lab. Eng. Mat. Tokyo Inst. of Technology No. 12 p. 59Google Scholar
  51. Yoshimura Met al 1989a Rep. Res. Lab. Eng. Mat. Tokyo Inst. Technology No. 14 p. 21Google Scholar
  52. Yoshimura Met al 1989bJ. Ceram. Soc. Jap. Int. Ed. 97 14Google Scholar

Copyright information

© Indian Academy of Sciences 2000

Authors and Affiliations

  • Shigeyuki Sōmiya
    • 1
    • 2
  • Rustum Roy
    • 1
    • 2
  1. 1.Tokyo Institute of TechnologyTeikyo University of Science and TechnologyTokyoJapan
  2. 2.Materials Research LaboratoryUniversity ParkUSA

Personalised recommendations