Folia Microbiologica

, 44:419 | Cite as

Redox activity ofHydrodictyon reticulatum plasmalemma vesicles

  • J. Matoušková
  • L. Nešpůrková
  • R. Rybová
  • K. Janáček


Plasmalemma vesicles with preserved redox activity were prepared from nets ofHydrodictyon reticulatum. Since the walls are mechanically very resistant, a combination of partial cell-wall enzyme digestion and ultrasonic homogenization had to be used for the disruption of cells. To isolate the plasma-membrane-enriched microsomal fraction separation in an aqueous two-phase polymer system was found to be most suitable. The right-side-out vesicles reduced added hexacyanoferrate(III) by electrons supplied either by a transmembrane flow or from external NADH.


NADH Microsomal Fraction Hexacyanoferrate Redox Activity Plasma Membrane Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Askerlund P., Larsson C.: Redox activities measured with inside-out and right-side-out plasma membrane vesicles from sugar beet leaves, pp. 43–47 in J. Dainty, M.I. DeMichelis, E. Marré, F. Rasi-Caldogno (Eds).Plant Membrane Transport: The Current Position. Elsevier, Amsterdam 1989.Google Scholar
  2. Askerlund P., Larsson C., Widell S., Moller I.M.: NAD(P)H-oxidase and peroxidase activities in purified plasma membranes fromCauliflower inflorescences.Physiol. Plant. 71, 9–19 (1987).CrossRefGoogle Scholar
  3. Bérczi A., Moller I.M.: Comparison of the properties of plasmalemma vesicles purified from wheat roots by phase partitioning and by discontinuous sucrose gradient centrifugation.Physiol. Plant. 68, 59–66 (1986).CrossRefGoogle Scholar
  4. Böttger M.: Transmembrane electron transfer of NADH loaded right-side-out vesicles, pp. 55–60 in J. Dainty, M.I. DeMichelis, E. Marré, F. Rasi-Caldogno (Eds):Plant Membrane Transport: The Current Position. Elsevier, Amsterdam 1989.Google Scholar
  5. Bourdil I., Blein J.P.: NADH-ferricyanide reductase activities associated with plasma membranes of corn roots, pp. 117–118 in J. Dainty, M.I. DeMichelis, E. Marré, F. Rasi-Caldogno (Eds):Plant Membrane Transport: The Current Position. Elsevier, Amsterdam 1989.Google Scholar
  6. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  7. Chosack E., Rubinstein B., Reinhold L.: Effect of iron deficiency on electron transport processes of plasmalemma-enriched vesicles isolated from cotton roots.Plant Sci. 77, 163–172 (1991).CrossRefGoogle Scholar
  8. Crane F.L., Sun I.L., Barr R., Low H.: Electron and proton transport across the plasma membrane.J. Bioenerg. Biomembr. 23, 773–803 (1991).PubMedCrossRefGoogle Scholar
  9. Hodges T.K., Mills D.: Isolation of the plasma membrane.Methods Enzymol. 118, 41–54 (1986).Google Scholar
  10. Katz A., Kaback H.R., Avron M.: Na+/H+ antiport in isolated plasma membrane vesicles from the halotolerant algaDunaliella salina.FEBS Lett. 202, 141–144 (1986).CrossRefGoogle Scholar
  11. Kjellborn P., Larsson C., Askerlund P., Schelin C., Widell S.: Cytochrome P-450/420 in plant plasma membranes: a possible component of the blue-light-reducible flavoprotein-cytochrome complex.Photochem. Photobiol. 42, 779–783 (1985).CrossRefGoogle Scholar
  12. Komor E., Thom M., Maretzki A.: Oxidation of extracellular NADH by sugarcane cells, coupling to ferricyanide reduction, oxygen uptake and pH change.Planta 170, 34–43 (1987).CrossRefGoogle Scholar
  13. Kotyk A., Janáček K.: Interpretation of transport data, pp. 233–234 inCell Membrane Transport Principles and Techniques. Plenum Press, New York-London 1970.Google Scholar
  14. Larsson C., Askerlund P., Palmgren M.G., Fredrikson K., Sommarin M., Widell S.: Optimal condition for the production and isolation of sealed inside-out plasma membrane vesicles, pp. 105–106 in J. Dainty, M.I. DeMichelis, E. Marré, F. Rasi-Caldogno (Eds.):Plant Membrane Transport: The Current Position. Elsevier, Amsterdam 1989.Google Scholar
  15. Larsson C., Widell S., Sommarin M.: Inside-out plant plasma membrane vesicles of high purity obtained by aqueous two-phase partitioning.FEBS Lett. 229, 289–292 (1988).CrossRefGoogle Scholar
  16. Marré M.T., Moroni A., Albergoni F.G., Marré E.: Plasmalemma redox activity and H+ extrusion.Plant Physiol. 87, 25–29 (1988).PubMedGoogle Scholar
  17. Metlička R., Nešpůrková L., Pilař J., Ryba O., Rybová R.: The plasmalemma redox system of a fresh-water alga and membrane electrical parameters.Biochim. Biophys. Acta 1069, 175–180 (1991).PubMedCrossRefGoogle Scholar
  18. Nešpůrková L., Lazarová J., Janáček K., Rybová R.: Effects of electron acceptors on anion uptake inHydrodictyon reticulatum.J. Plant Physiol. 141, 533–537 (1993).Google Scholar
  19. Perlin D.S., Spanswick R.M.: Labeling and isolation of plasma membranes from corn leaf protoplasts.Plant Physiol. 65, 1053–1057 (1980).PubMedCrossRefGoogle Scholar
  20. Rybová R., Janáček K., Slavíková M.: Ionic relations of the algaHydrodictyon reticulatum. The effect of light conditions and inhibitors.Z. Pflanzenphysiol. 66, 420–432 (1972).Google Scholar
  21. Rybová R., Nešpůrková L., Ryba O., Janáček K.: Tetrathiafulvalene radical cation—a new potent inhibitor of anion transport in a green alga.Bot. Acta 103, 404–407 (1990).Google Scholar
  22. Smahel M., Hamann A., Gradmann D.: The prime plasmalemma ATPase of the halophilic algaDunaliella bioculata: purification and characterization.Planta 181, 496–504 (1990).CrossRefGoogle Scholar
  23. Ullrich W.R., Lazarová J., Ullrich C.I., Witt F.G., Aparicio P.J.: Nitrate uptake and extracellular alkalization by the green algaHydrodictyon reticulatum in blue and red light.J. Exp. Bot. 49, 1157–1162 (1998).CrossRefGoogle Scholar
  24. Vianello A., Macri F.: NAD(P)H oxidation elicits anion superoxide formation in radish plasmalemma vesicles.Biochim. Biophys Acta 980, 202–208 (1989).PubMedCrossRefGoogle Scholar
  25. Vianello A., Braidot E., Bassi G., Macri F.: Lipoxygenase activity on the plasmalemma of sunflower protoplasts and its modulation.Biochim. Biophys. Acta 1255, 57–62 (1995).PubMedGoogle Scholar
  26. Vianello A., Lancani M., Macri F.: Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles.Biochim. Biophys. Acta 1023, 19–24 (1990).PubMedCrossRefGoogle Scholar
  27. Widell S., Larsson C.: Separation of presumptive plasma membranes from mitochondria by partition in an aqueous polymer two phase system.Physiol. Plant. 51, 368–374 (1981).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  • J. Matoušková
    • 1
  • L. Nešpůrková
    • 1
  • R. Rybová
    • 1
  • K. Janáček
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague

Personalised recommendations