Folia Microbiologica

, 44:367 | Cite as

Characterization and some reaction-engineering aspects of thermostable extracellular β-galactosidase from a newBacillus species

  • R. K. Sani
  • S. Chakraborti
  • R. C. Sobti
  • P. R. Patnaik
  • U. C. Banerjee


A new strain ofBacillus sp. was isolated from a hot water spring in India. This strain generated a high activity of extracellular β-galactosidase at 37 °C in shake flasks. The β-galactosidase activity was found to increase continuously but the production rate was slower than with some other organisms reported in the literature. There were noteworthy differences in the time-domain profiles of bacterial concentration and β-galactosidase activity when the starting concentration of substrate (glucose) was tripled from 10 g/L. These differences may be explained in terms of the relative rates of enzyme synthesis and its diffusion across the cell wall. The enzyme produced by this organism is more stable than other β-galactosidases; its half-life is 408 h at 50 °C and 94 h at 55 °C, while the reported enzymes showed perceptible loss of activity within 2 h.


Lactose Lactis Specific Growth Rate Lactose Hydrolysis Cell Mass Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Athes V., Combes D.: Influence of additives on high pressure stability of β-galactosidase fromKluyveromyces lactis and invertase fromSaccharomyces cerevisiae.Enzyme Microb. Technol. 22, 532–537 (1998).CrossRefGoogle Scholar
  2. Athes V., Degraeve P., Cavaille-Lefebvre D., Espeillac S., Lemay P., Combes D.: Increased thermostability of three mesophilic β-galactosidases under high pressure.Biotechnol. Lett. 19, 273–276 (1997).CrossRefGoogle Scholar
  3. Bailey M.J., Linko M.: Production of β-galactosidase byAspergillus oryzae in submerged bioreactor cultivation.J. Biotechnol. 16, 57–66 (1990).CrossRefGoogle Scholar
  4. Becerra M., Cerdan E., Siso M.I.G.: Micro-scale purification of β-galactosidase fromKluyveromyces lactis reveals that dimeric and tetrameric forms are active.Biotechnol. Biotech. 12, 253–256 (1998).Google Scholar
  5. Becerra M., Siso M.I.G.: Yeast β-galactosidase in solid-state fermentation.Enzyme Microb. Technol. 19, 39–44 (1996).CrossRefGoogle Scholar
  6. Choi Y.J., Kim H., Lee B.H., Lee J.S.: Purification and characterization of β-galactosidase from alkalophilic and thermophilicBacillus sp. TA-11.Biotechnol. Appl. Biochem. 22, 191–201 (1995).Google Scholar
  7. Gekas V., Lopez-Leiva M.: Hydrolysis of lactose: a literature review.,Proc. Biochem. 20, 2–12 (1985).Google Scholar
  8. Greenberg N.A., Mahoney R.R.: Immobilization, of lactase (β-galactosidase) for use in dairy processing: a review.Proc. Biochem. 16, 2–8 (1981).Google Scholar
  9. Machida S., Yu Y., Singh S.P., Kim J.D., Hayashi K., Kawata Y.: Overproduction of β-galactosidase in active form by anEscherichia coli system coexpressing the chaperonin GroEL/ES.FEMS Microbiol. Lett. 159, 41–46 (1998).PubMedGoogle Scholar
  10. Nagano H., Omori M., Shoji Z., Kawaguchi T., Arai M.: Purification and characterization of β-galactosidase fromEnterobacter cloacae GAO.Biosci. Biotech. Biochem. 56, 674–675 (1992).CrossRefGoogle Scholar
  11. Nielsen J., Pedersen A.G., Strudsholin K., Villadsen J.: Modeling fermentation with recombinant microorganisms: formulation of a structured model.Biotechnol. Bioeng. 37, 802–808 (1991).CrossRefPubMedGoogle Scholar
  12. Othsuka K., Benno V., Endo K., Ozawa O., Veda H., Uchida T., Mitsuoka T.: Effects of 4′-galactosyllactose intake on human fecal microflora.Bifidus 2, 143–149 (1989).Google Scholar
  13. Prenosil J.E., Stuker E., Bourne J.R.: Formation of oligosaccharides during enzymatic lactose hydrolysis. 1. State of art.Biotechnol. Bioeng. 30, 1019–1025 (1987).CrossRefPubMedGoogle Scholar
  14. Santos A., Ladero M., Garcia-Ochoa F.: Kinetic modeling of lactose hydrolysis by a β-galactosidase fromKluyveromyces fragilis.Enzyme Microb. Technol. 22, 558–567 (1998).CrossRefGoogle Scholar
  15. Shaikh S.A., Khire J.M., Khan M.I.: Production of β-galactosidase from thermophilic fungusRhizomucor sp.J. Ind. Microbiol. Biotechnol. 19, 239–245 (1997).CrossRefGoogle Scholar
  16. Siso M.I.G., Doval S.S.:Kluyveromyces lactis immobilization on corn grits for milk whey lactose hydrolysis.Enzyme Microb. Technol. 16, 303–310 (1994).CrossRefGoogle Scholar
  17. Tanaka R.H., Takayama M.M., Kuroshima T., Ueyama S., Matsumoto K., Kuroda A., Mutai M.: Effects of administration of TOS andBifidobacterium breve 4006 on the human fecal flora.Bifidobacteria Microflora 2, 17–24 (1983).Google Scholar
  18. Tomaska M., Stredansky S., Gemeiner P., Sturdik E.: Improvement of the thermostability of β-galactosidase fromKluyveromyces marxianus Process Biochem. 30, 649–652 (1995).CrossRefGoogle Scholar
  19. Vieth W.R.:Membrane Systems: Analysis and Design. Hanser, Munich (Germany) 1988.Google Scholar
  20. Ye K., Jin S., Shimizu K.: Fuzzy neural network for the control of high cell density cultivation of recombinantE. coli.J. Ferment. Bioeng. 77, 663–673 (1994).CrossRefGoogle Scholar
  21. Zukowski M.M.: Production of commercially valuable products, pp. 311–337 in R.H. Doi, M. McGlouglin (Eds):Biology of Bacilli: Applications to Industry. Butterworth-Heinemann, Oxford (UK) 1992.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  • R. K. Sani
    • 1
  • S. Chakraborti
    • 2
  • R. C. Sobti
    • 2
  • P. R. Patnaik
    • 1
  • U. C. Banerjee
    • 1
  1. 1.Institute of Microbial TechnologyChandigarhIndia
  2. 2.Department of BiotechnologyPanjab UniversityChandigarhIndia

Personalised recommendations