Journal of Structural Chemistry

, Volume 39, Issue 6, pp 805–810 | Cite as

Theory of lineshape in photoelectron and Auger spectra

  • V. G. Yarzhemsky
Proceedings of the 15th scientific-seminar “x-ray and electron spectra and chemical bonding”


A theory of lineshape in photoelectron spectra is developed based on the Green’s function calculation of the atomic vacancy structure. It is shown that the broadening of photoelectron lines is always somewhat asymmetrical, and the broadening of satellite lines arising in atomic photoionization is generally strongly asymmetrical and inverse. The approach is generalized to low-energy Auger spectra; it is shown that Auger decay lines of excited atomic states may narrow with respect to the width of the initial level. The results are compared with experimental photoelectron spectra.


Auger Photoelectron Spectrum Asymmetry Parameter Auger Spectrum Auger Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Svensson, B. Ericsson, N. Martensson, et al.,J. Electron Spectrosc. Relat. Phenom.,47, 327–384 (1988).CrossRefGoogle Scholar
  2. 2.
    M. Pahler, C. D. Caldwell, S. J. Schaphorst, and M. O. Krause,J. Phys. B: At. Mol. Opt. Phys.,26, 1617–1625 (1993).CrossRefGoogle Scholar
  3. 3.
    A. Kikas, S. J. Osborne, A. Ausmees, et al.,J. Electron Spectrosc. Relat. Phenom.,77, 241–266 (1996).CrossRefGoogle Scholar
  4. 4.
    U. Becker,ibid.,75, 23–34 (1995).CrossRefGoogle Scholar
  5. 5.
    P. Glans, R. E. La Villa, M. Ohno, et al.,Phys. Rev. A,47, No. 2, 1539–1542 (1993).CrossRefGoogle Scholar
  6. 6.
    A. S. Kneifets, M. Ya. Amusia, V. G. Yarzhemsky,J. Phys. B: At. Mol. Opt. Phys.,18, L343-L350 (1985).CrossRefGoogle Scholar
  7. 7.
    V. G. Yarzhemsky, T. Reich, and L. V. Chernysheva,J. Electron Spectrosc. Relat. Phenom.,58, 67–74 (1992).CrossRefGoogle Scholar
  8. 8.
    V. G. Yarzhemsky, G. B. Armen, and F. P. Larkins,J. Phys. B: At. Mol. Opt. Phys.,26, 2785–2794 (1993).CrossRefGoogle Scholar
  9. 9.
    V. G. Yarzhemsky, A. S. Kneifets, G. B. Armen, and F. P. Larkins,ibid.,28, 2105–2112 (1995).CrossRefGoogle Scholar
  10. 10.
    V. Caravetta, H. Angren, and A. Cesar,Chem. Phys. Lett.,180, No. 4, 358–365 (1991).CrossRefGoogle Scholar
  11. 11.
    V. G. Yarzhemsky, T. Reich, L. V. Chernysheva, et al.,J. Electron Spectrosc. Relat. Phenom.,77, 15–24 (1996).CrossRefGoogle Scholar
  12. 12.
    S. Doniach and M. Sunjic,J. Phys. C,3, 285–291 (1970).CrossRefGoogle Scholar
  13. 13.
    G. Wendin, in:Structure and Bonding, Vol.45, Springer, Heidelberg (1981), pp. 1–123.Google Scholar
  14. 14.
    M. Ya. Amusia and A. S. Kheifets,Zh. Éksp. Teor. Fiz.,86, No. 4, 1217–1226 (1984).Google Scholar
  15. 15.
    D. L. Walters and C. P. Bhalla,Phys. Rev. A,3, No. 6, 1919–1927 (1971).CrossRefGoogle Scholar
  16. 16.
    M. Ohno and G. Wendin,ibid.,31, No. 4, 2318–2330 (1985).CrossRefGoogle Scholar
  17. 17.
    M. Ya. Amusia and L. V. Chernysheva,Computation in Atomic Physics, IOP Publishing, Bristol (1997).Google Scholar
  18. 18.
    M. Ohno and G. Wendin,J. Phys. B: At. Mol. Opt. Phys.,8, 1305–1328 (1979).Google Scholar
  19. 19.
    U. Becker and R. Wehlitz,J. Electron Spectroscop. Relat. Phenom.,67, 341–361 (1994).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. G. Yarzhemsky
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscow

Personalised recommendations