Fibers and Polymers

, 5:245 | Cite as

Synthesis, structure, and thermal property of poly(trimethylene terephthalate-co-trimethylene 2,6-naphthalate) copolymers



Poly(trimethylene terephthalate-co-trimethylene 2,6-naphthalate)s (P(TT-co-TN)s) with various copolymer composition were synthesized, and their chain structure, thermal property and crystalline structure were investigated by using1H-NMR spectroscopy, differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD), respectively. It was found from sequence analysis that all the P(TT-co-TN) copolymers synthesized have a statistical random distribution of TT and TN units. It was also observed from DSC thermograms that the glass transition temperature increases linearly with increasing the TN comonomer content, whereas the melting temperature of copolymer decreases with increasing the corresponding comonomer content in respective PTT- and PTN-based copolymer, showing pseudo-eutectic melting behavior. All the samples melt-crystallized isothermally except for P(TT-co-66 mol % TN) exhibit multiple melting endotherms and clear X-ray diffraction patterns. The multiple melting behavior originates from the dual lamellar population and/or the melting-recrystallization-remelting. The X-ray diffraction patterns are largely divided into two classes depending on the copolymer composition, i.e., PTT and PTNβ-form diffraction patterns, without exhibiting cocrystallization.


Poly(trimethylene terephthalate) Poly(trimethylene naphthalate) Copolymer Thermal property Crystal structure 


  1. 1.
    S. Poulin-Dandurand, S. Pérez, J. F. Revol, and F. Brisse,Polymer,20, 419 (1979).CrossRefGoogle Scholar
  2. 2.
    I. J. Desborough, I. H. Hall, and J. A. Neisser,Polymer,20, 545 (1979).CrossRefGoogle Scholar
  3. 3.
    E. Jakeways, I. M. Ward, M. A. Wilding, I. H. Hall, I. J. Desborough, and M. G. Pass,J. Polym. Sci., Polym. Phys.,13, 799 (1975).CrossRefGoogle Scholar
  4. 4.
    I. M. Ward and M. A. Wilding,J. Polym. Sci., Polym. Phys.,14, 263 (1976).CrossRefGoogle Scholar
  5. 5.
    E. E. Shafee,Polymer,44, 3727 (2003).CrossRefGoogle Scholar
  6. 6.
    M. Pyda and B. Wunderlich,J. Polym. Sci., Polym. Phys.,38, 622 (2000).CrossRefGoogle Scholar
  7. 7.
    J.-M. Huang and F.-C. Chang,J. Polym. Sci., Polym. Phys.,38, 934 (2000).CrossRefGoogle Scholar
  8. 8.
    P.-D. Hong, W.-T. Chung, and C.-F. Hsu,Polymer,43, 3335 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Chen, C. C. Chen, K. Z. Kz, and R. M. Ho,J. Macromol. Sci., Phys.,B41, 1063 (2002).Google Scholar
  10. 10.
    P.-L. Wu and E. M. Woo,J. Polym. Sci., Polym. Phys.,41, 80 (2003).CrossRefGoogle Scholar
  11. 11.
    R. S. Tsai and Y. D. Lee,J. Polym. Res.,5, 77 (1998).CrossRefGoogle Scholar
  12. 12.
    S. K. Hwang, C. Yeh, L. S. Chen, T. F. Way, L. M. Tsay, K. K. Liu, and L. T. Chen,Polymer Preprints,40, 611 (1999).Google Scholar
  13. 13.
    U. Stier, F. Gahr, and W. Oppermann,J. Appl. Polym. Sci.,80, 2039 (2001).CrossRefGoogle Scholar
  14. 14.
    U. Stier and W. Oppermann,J. Polym. Sci., Polym. Phys.,39, 620 (2001).Google Scholar
  15. 15.
    U. Stier, D. Schawaller, and W. Oppermann,Polymer,42, 8753 (2001).CrossRefGoogle Scholar
  16. 16.
    Y. G. Jeong, W. H. Jo, and S. C. Lee,Polymer,44, 3259 (2003).CrossRefGoogle Scholar
  17. 17.
    Y. G. Jeong, W. H. Jo, and S. C. Lee,Polymer,45, 379 (2004).CrossRefGoogle Scholar
  18. 18.
    C. Hwo, T. Forschner, R. Lowtan, D. Gwyn, and B. Cristea,J. Plast. Film Sheet,15, 219 (1999).CrossRefGoogle Scholar
  19. 19.
    X. S. Wang, X. G. Li, and D. Y. Yan,J. Appl. Polym. Sci.,78, 2025 (2000).CrossRefGoogle Scholar
  20. 20.
    J. M. Huang and F. C. Chang,J. Appl. Polym. Sci.,84, 850 (2002).CrossRefGoogle Scholar
  21. 21.
    T. W. Son, K. I. Kim, N. H. Kim, M. G. Jeong, and Y. H. Kim,Fiber Polym.,4, 20 (2003).CrossRefGoogle Scholar
  22. 22.
    E. M. Woo and L. T. Lee,Polym. Bull.,50, 33 (2003).CrossRefGoogle Scholar
  23. 23.
    C. P. Roupakias, G. Z. Papageorgiou, and G. P. Karayannidis,J. Macromol. Sci. Pure & Appl. Chem.,A40, 791 (2003).CrossRefGoogle Scholar
  24. 24.
    F. C. Chiu, K. H. Huang, and J. C. Yang,J. Polym. Sci., Polym. Phys.,41, 2264 (2003).CrossRefGoogle Scholar
  25. 25.
    E. M. Woo and Y. H. Kuo,J. Polym. Sci., Polym. Phys.,41, 2394 (2003).CrossRefGoogle Scholar
  26. 26.
    J. H. Kim, J. H. Park, H. K. Jang, J. Y. Yoon, and W. S. Lyoo,J. Appl. Polym. Sci.,90, 2200 (2003).CrossRefGoogle Scholar
  27. 27.
    R. Yamadera and M. Murano,J. Polym. Sci., Polym. Chem.,5, 2259 (1967).CrossRefGoogle Scholar
  28. 28.
    J. L. Koenig, “Chemical Microstructure of Polymer Chains”, John Wiley and Sons, New York, 1980.Google Scholar
  29. 29.
    Y. G. Jeong, Ph.D. Thesis, Seoul National University, Seoul, Korea, 2003.Google Scholar
  30. 30.
    J. H. Gibbs and E. A. DiMarzio,J. Chem. Phys.,28, 373 (1958).CrossRefGoogle Scholar
  31. 31.
    E. A. DiMarzio and J. H. Gibbs,J. Polym. Sci.,40, 121 (1959).CrossRefGoogle Scholar
  32. 32.
    L. A. Wood,J. Polym. Sci.,28, 319 (1958).CrossRefGoogle Scholar
  33. 33.
    Y. S. Sun and E. M. Woo,Macromolecules,32, 7836 (1999).CrossRefGoogle Scholar
  34. 34.
    R. H. Lin and E. M. Woo,Polymer,41, 121 (2000).CrossRefGoogle Scholar
  35. 35.
    R. J. Samuels,J. Polym. Sci., Polym. Phys.,13, 1417 (1975).CrossRefGoogle Scholar
  36. 36.
    W. M. Prest, Jr. and D. J. Luca,J. Appl. Phys.,46, 4136 (1975).CrossRefGoogle Scholar
  37. 37.
    K. N. Kruger and H. G. Zachmann,Macromolecules,26, 5202 (1993).CrossRefGoogle Scholar
  38. 38.
    R. K. Verma and B. S. Hsiao,Trends Polym. Sci.,4, 312 (1996).Google Scholar
  39. 39.
    R. K. Verma, H. Marand, and B. Hsiao,Macromolecules,29, 7767 (1996).CrossRefGoogle Scholar
  40. 40.
    Z. Denchez, A. Nogales, T. A. Ezquerra, J. Fernandes-Nascimento, and F. J. Balta-Calleja,J. Polym. Sci., Polym. Phys.,38, 1167 (2000).CrossRefGoogle Scholar
  41. 41.
    G. Groeninckx and H. Reynaers,J. Polym. Sci., Polym. Phys.,18, 1325 (1980).CrossRefGoogle Scholar
  42. 42.
    D. J. Blundell and B. N. Osborn,Polymer,24, 953 (1983).CrossRefGoogle Scholar
  43. 43.
    Y. Lee and R. S. Porter,Macromolecules,20, 1336 (1987).CrossRefGoogle Scholar
  44. 44.
    A. Jonas and R. Legas,Macromolecules,26, 813 (1993).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2004

Authors and Affiliations

  1. 1.Hyperstructured Organic Materials Research Center and School of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.School of Advanced Materials and Systems EngineeringKumoh National University of TechnologyKumiKorea

Personalised recommendations