Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 98, Issue 2, pp 223–244 | Cite as

Phenomenological constraints on superstring models with intermediate-mass scales

  • F. Gabbiani
Article
  • 12 Downloads

Summary

The mechanism for generating radiatively the breaking of the gauge symmetry at an intermediate-mass scale, in the framework ofE6 superstring-inspired models, is discussed in the case where the light standard-model singlets from the additional\(b_{1,1} \left( {\underline {27} + \overline {\underline {27} } } \right)\) pairs interact with the fields of theng generations of27, through both renormalizable and non-renormalizable couplings. The minimization of the effective scalar potential is worked out in a specific model, based on the gauge groupSU(3)c×SU(2)L×U(1) Y ×U(1) E . The resultant mixings among the various fields are analysed, pointing out the consequences for the problem of proton decay: it is shown that this problem cannot be solved together with that of the neutrino mass, without involving some discrete symmetry.

PACS

11.30.Pb - Supersymmetry 

Феноменологические ограничения на суперструнные модели с промежуточной массовой шкалой

Резюме

Обсуждается механизм нарушения калибровочной симметрии для промежуточной массовой шкалы в рамкахE6 суперструнных моделеи в случае, когда легкие синглегы стандартной модели из дополнительных\(b_{1,1} \left( {\underline {27} + \overline {\underline {27} } } \right)\) пар взаимодействуют с полямиng поколений27 через перенормируемые и неперенормируемые связи. Минимизация эффективного скалярного потенциала осуществляется в рамках специальной модели, основанной на калибровочной группеSU(3)C×SU(2)L×U(1) Y ×U(1) E . Анализируются результирующие смешивания между различными полями, отмечая следствия для проблемы распада протона. Показывается, что эта проблема не может быть решена вместе с проблемой массы нейтрино, без привлечения некоторой дискретной симметрии.

Riassunto

Si discute il meccanismo per generare radiativamente la rottura della simmetria di gauge a una scala di massa intermedia, nell'ambito dei modelli con gruppo di gaugeE6 ispirati alle superstringhe, nel caso in cui i singoletti leggeri rispetto al modello standard, provenienti dalle coppie addizionali\(b_{1,1} \left( {\underline {27} + \overline {\underline {27} } } \right)\), interagiscono con i campi delleng generazioni di27, sia attraverso accoppiamenti rinormalizzabili che non rinormalizzabili. La minimizzazione del potenziale scalare effettivo si effettua in un modello specifico, basato sul gruppo di gaugeSU(3)C×SU(2)L×U(1) Y ×U(1) E . Sono analizzati i mescolamenti risultanti tra i vari campi, indicandone le conseguenze per il problema del decadimento del protone: si mostra che questo problema non può essere risolto assieme a quello della massa del neutrino, senza implicare qualche simmetria discreta.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    seeJ. Ellis: CERN preprint TH-4439 (1985), TH-4474 (1986);L. E. Ibáñez: CERN preprint TH-4459 (1986);H. P. Nilles: CERN preprint TH-4444 (1986).Google Scholar
  2. (2).
    E. Witten:Nucl. Phys. B,258, 75 (1985).CrossRefADSGoogle Scholar
  3. (3).
    M. Dine, V. Kaplunovsky, M. Mangano, C. Nappi andN. Seiberg:Nucl. Phys B,259, 519 (1985).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    J. P. Derendinger, L. E. Ibáñez andH. P. Nilles:Nucl. Phys B,267, 365 (1986).CrossRefADSGoogle Scholar
  5. (5).
    F. del Aguila, G. Blair, M. Daniel andG. G. Ross:Nucl. Phys. B,272, 413 (1986).CrossRefADSGoogle Scholar
  6. (6).
    L. E. Ibáñez andJ. Mas:Nucl. Phys. B,286, 107 (1987).CrossRefADSGoogle Scholar
  7. (7).
    B. R. Greene, K. H. Kirklin, P. J. Miron andG. G. Ross:Nucl. Phys. B,278, 667 (1986);Phys. Lett. B,180, 69 (1986).MathSciNetCrossRefADSGoogle Scholar
  8. (8).
    M. Mangano:Z. Phys. C,28, 613 (1985).CrossRefADSGoogle Scholar
  9. (9).
    G. Costa, F. Feruglio, F. Gabbiani andF. Zwirner:Nucl. Phys. B,286, 325 (1987).CrossRefADSGoogle Scholar
  10. (10).
    F. Feruglio andF. Gabbiani:Mod. Phys. Lett. A,2, 133 (1987).CrossRefADSGoogle Scholar
  11. (11).
    F. Gabbiani:Nuovo Cimento A,98, 1 (1987).CrossRefADSGoogle Scholar
  12. (12).
    B. R. Greene, K. H. Kirklin andP. J. Miron:Nucl. Phys. B,274, 574 (1986);R. Holman andD. B. Reiss:Phys. Lett. B,176, 74 (1986);D. Bailin, A. Love andS. Thomas:Phys. Lett. B,176, 81 (1986);178, 15 (1986);D. Bailin andA. Love:Phys. Lett. B,181, 273 (1986);R. Holman andD. B. Reiss:Phys. Lett. B,166, 305 (1986).MathSciNetCrossRefADSGoogle Scholar
  13. (13).
    Y. Hosotani:Phys. Lett. B,126, 309 (1983);129, 193 (1983);E. Witten:Phys. Lett. B,149, 351 (1984);J. D. Breit, B. A. Ovrut andG. Segré:Phys. Lett. B,158, 33 (1985).CrossRefADSGoogle Scholar
  14. (14).
    M. Gell-Mann, P. Ramond andR. Slansky: inSupergravity, edited byP. van Nieuwenhuizen andD. Z. Freedman (North Holland, Amsterdam, 1979);T. Yanagida, inProceedings of the Workshop on Unified Theory and Baryon Number in the Universe, edited byO. Sawada andA. Sugamoto (KEK, Japan, 1979);R. N. Mohapatra:Phys. Rev. Lett.,56, 561 (1986);S. Nandi andU. Sarkar:Phys. Rev. Lett.,56, 564 (1986);R. N. Mohapatra andJ. W. F. Valle: University of Maryland preprint 86-127 (1986);Phys. Rev. D,34, 1642 (1986).Google Scholar
  15. (15).
    P. Candelas, G. Horowitz, A. Strominger andE. Witten:Nucl. Phys. B,258, 46 (1985);E. Witten:Phys. Lett. B,155, 151 (1985).MathSciNetCrossRefADSGoogle Scholar
  16. (16).
    A. Strominger andE. Witten:Commun. Math. Phys.,101, 341 (1985);A. Strominger: Santa Barbara preprint (1985);M. W. Goodman andE. Witten:Nucl. Phys. B,271, 21 (1986).MathSciNetCrossRefADSGoogle Scholar
  17. (17).
    V. Kaplunovsky:Phys. Rev. Lett,55, 1036 (1985).CrossRefADSGoogle Scholar
  18. (19).
    J. P. Derendinger andC. A. Savoy:Nucl. Phys. B,237, 307 (1984);N. K. Falck:Z. Phys. C,30, 247 (1986).CrossRefADSGoogle Scholar
  19. (20).
    J. P. Derendinger, L. E. Ibáñez andH. P. Nilles:Phys. Lett. B,155, 65 (1985);M. Dine, R. Rohm, N. Seiberg andE. Witten:Phys. Lett. B,156, 55 (1985).CrossRefADSGoogle Scholar
  20. (21).
    J. Ellis, D. V. Nanopoulos, M. Quirós andF. Zwirner:Phys. Lett. B,180, 83 (1986);J. Ellis, A. B. Lahanas, D. V. Nanopoulos, M. Quirós andF. Zwirner:Phys. Lett. B,188, 408 (1987).CrossRefADSGoogle Scholar
  21. (22).
    B. Holdom:Phys. Lett. B,166, 196(1986);F. del Aguila, G. A. Blair, M. Daniel andG. G. Ross:Nucl. Phys. B,283, 50 (1987);T. Matsuoka andD. Suematsu:Progr. Theor. Phys.,76, 901 (1986);F. del Aguila, M. Quirós andF. Zwirner:Nucl. Phys. B,284, 530 (1987).CrossRefADSGoogle Scholar
  22. (23).
    M. Drees:Phys. Lett. B,181, 279 (1986).CrossRefADSGoogle Scholar
  23. (24).
    S. Coleman andE. Weinberg:Phys. Rev. D,7, 1888 (1973).CrossRefADSGoogle Scholar
  24. (25).
    S. Weinberg:Phys. Rev. D,7, 2887 (1973).CrossRefADSGoogle Scholar
  25. (26).
    P. Fayet:Nucl. Phys. B,90, 104 (1975).CrossRefADSGoogle Scholar
  26. (27).
    H. P. Nilles:Phys. Lett. B,115, 193 (1982);Nucl. Phys. B,217, 366 (1983);L. E. Ibáñez:Phys. Lett. B,118, 73 (1982);Nucl. Phys. B,218, 514 (1983);L. E. Ibáñez andC. Lopez:Phys. Lett. B,126, 54 (1983);L. Alvarez-Gaumé, J. Polchinski andM. Wise:Nucl. Phys. B,221, 495 (1983);J. Ellis, J. Hagelin, D. V. Nanopoulos andK. Tamvakis:Phys. Lett. B,125, 275 (1983).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1987

Authors and Affiliations

  • F. Gabbiani
    • 1
  1. 1.INFNSezione di PadovaItalia

Personalised recommendations