Il Nuovo Cimento A (1965-1970)

, Volume 83, Issue 4, pp 352–360 | Cite as

An integral equation for the continuation of perturbative expansions

  • S. Ciulli
  • T. D. Spearman


It is shown how a procedure for analytic continuation, based on methods of functional analysis, can be used to extend the results of a perturbative calculation to yield nonperturbative information which could not be obtained directly from a perturbative expansion.

PACS. 02.30

Function theory analysis 

PACS. 11.10

Field theory 

PACS. 03.65

Quantum theory quantum mechanics 

Интегральное уравнение для продолжения пертурбационных разложений


Показывается, как процедура аналитического продолжения, основанная на методах функционального анализа, может быть использована для распространения результатов пертурбационных вычислений, чтобы получинть непертурбационную информацию, которая не может быть получена непосредственно из пертурбационного разложения.


Si mostra come una procedura per la continuazione analitica, basata su metodi di analisi funzionale, possa essere usata per estendere i risultati di un calcolo perturbativo per generare l'informazione non perturbativa che non si potrebbe ottenere direttamente da uno sviluppo perturbativo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. A. Shifman, A. I. Vainshtein andV. I. Zakharov:Nucl. Phys. B,147, 385, 448, 519 (1979).CrossRefADSGoogle Scholar
  2. (2).
    See, for example,B. Simon:Large orders and summability of eigenvalue problems, inInt. J. Quantum Chem., Proceedings of the 1981 Sanibel Workshop;G. Auberson andG. Mennessier:J. Math. Phys. (N.Y.),22, 2472 (1981).Google Scholar
  3. (3).
    L. Schlessinger andC. Schwartz:Phys. Rev. Lett.,16, 1173 (1966).CrossRefADSGoogle Scholar
  4. (4).
    The exponentially weighted integrals in ref. (1), are equivalent to Borel summations. Some authors use moments (in fact the dominant eigenvalue procedure),e.g.,J. S. Bell andR. A. Bertlmann:Nucl. Phys. B,187, 285 (1981);I. Caprini andC. Verzegnassi: SISSA preprint, January 1983. See alsoS. Ciulli andT. D. Spearman: paper No. 443,XXI International Conference on High Energy Physics, July 1982 (DIAS preprint 82-14 andJ. Phys. (Paris), Lett.,45, 887 (1984))T. D. Spearman: invited lecture atThe 1983 Smolnice Conference on Hadron Structure.CrossRefADSGoogle Scholar
  5. (5).
    N. N. Khuri:Phys. Rev. D,23, 2285 (1981).CrossRefADSGoogle Scholar
  6. (6).
    For a comprehensible review of the graph summing problem seeA. D. Jackson, A. Lande andR. A. Smith:Phys. Rep.,86, 55 (1982).CrossRefADSGoogle Scholar
  7. (9).
    J. Hamilton, P. Menotti, T. D. Spearman andW. S. Woolcock:Nuovo Cimento,20, 519 (1961).CrossRefGoogle Scholar
  8. (11).
    S. Ciulli andT. D. Spearman:J. Math. Phys. (N. Y.),23, 1752 (1982);Phys. Rev. D,27, 1580 (1983).MathSciNetCrossRefADSMATHGoogle Scholar
  9. (12).
    Other constraints of physical interest, such as the positivity of ImA(E), can be included by using generalized Lagrange multipliers, seeI. Caprini:Nuovo Cimento A,21, 236 (1974).MathSciNetCrossRefADSGoogle Scholar
  10. (13).
    M. Ciulli, S. Ciulli andT. D. Spearman:Bounds for the continuation of perturbative results to the spectral region, to be published inJ. Math. Phys. (N. Y.).Google Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • S. Ciulli
    • 1
    • 2
  • T. D. Spearman
    • 2
    • 3
  1. 1.Department de Physique MathématiqueU.S.T.L.MontpellierFrance
  2. 2.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  3. 3.School of MathematicsTrinity CollegeDublin 2Ireland

Personalised recommendations