Il Nuovo Cimento (1955-1965)

, Volume 15, Issue 3, pp 408–415 | Cite as

Dispersion relations and vibrational frequency spectra

  • A. A. Maradudin
  • G. H. Weiss


Many relations have been given connecting connecting the dispersion relations and frequency spectrum for a vibrating lattice. It is the purpose of this paper to show that these relations can all be derived from a single integral representation by using different representations of theδ-function.


Sono state formulate molte espressioni che mettono in rapporto le relazioni di dispersione con lo spettro di frequenza di un reticolo in vibrazione. È scopo di questo articolo mostrare che queste relazioni si possono tutte derivare da un’unica rappresentazione integrale usando diverse rappresentazioni della funzioneδ.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. Born andK. Huang:Dynamical Theory of Crystal Lattices, 1st ed. (London, 1954).Google Scholar
  2. (2).
    W. A. Bowers andH. B. Rosenstock:Journ. Chem. Phys.,18, 1056 (1950).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    E. W. Montroll:Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, 1st ed. (Berkeley, 1956), p. 209.Google Scholar
  4. (4).
    A. Maradudin andJ. Peretti:Comp. Ren.,247, 2310 (1958).Google Scholar
  5. (5).
    F. J. Dyson:Phys. Rev.,92, 1331 (1953).MathSciNetADSCrossRefMATHGoogle Scholar
  6. (6).
    J. Peretti:Journ. Chem. Phys. of Solids (to appear).Google Scholar
  7. (7).
    E. C. Tichmarsh:Introduction to the Theory of Fourier Integrals, 1st ed. (London, 1937).Google Scholar
  8. (8).
    D. Widder:The Laplace Transform, 1st ed. (Princeton, 1946).Google Scholar
  9. (9).
    E. W. Montroll:Journ. Chem. Phys.,10, 218 (1942);11, 481 (1943).ADSCrossRefGoogle Scholar
  10. (10).
    C. Domb, A. Maradudin, E. Montroll andG. Weiss:Phys. Rev.,115, 8 (1959).MathSciNetADSGoogle Scholar
  11. (11).
    L. van Hove:Phys. Rev.,89, 1189 (1953).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1960

Authors and Affiliations

  • A. A. Maradudin
    • 1
  • G. H. Weiss
    • 1
  1. 1.Institute for Fluid Dynamics and Applied MathematicsUniversity of MarylandCollege Park

Personalised recommendations