Advertisement

Pion form factor in a scalar model

  • A. V. Efremov
  • V. A. Nesterenko
  • A. V. Radyushkin
Article

Summary

Using as an example the simple scalar modelρ (6) 3 ; we describe our method of analysing the bound-state form factors based on the systematic use of the alpha-representation for Feynman diagrams. The nature of «nonrenormalization group» logarithms specific for the form-factor-type problems is investigated. The summation of ladder contributions is performed in the leading-logarithm approximation.

Keywords

PACS. 11.10 Field theory 

Формфактор пиона в скалярной модели

Резюме

На примере простой скалярной моделиρ (6) 3 излагается метод анализа формфакторов составных систем, основанный на систематическом использовании альфа-представления фейнмановских диаграмм. Исследуется природа «неренормгрупповых» логарифмов, специфичных для задач формфакторного типа. Проведено суммирование лестничных вкладов в главном лограрифмическом приближении.

Riassunto

Usando come esempio il semplice modello scalareρ (6) 3 si descrive il metodo di analizzare i fattori di forma dello stato legato basati sull’uso sistematico della rappresentazione alfa per i diagrammi di Feyman. Si studia la natura dei logaritmi del gruppo di non rinormalizzazione specifico di problemi di tipo fattore di forma. Si esegue la somma dei contributi di a gradini nell’approssimazione del logaritmo principale.

References

  1. (1).
    A. V. Efremov andA. V. Radyushkin:Teor. Mat. Fiz.,42, 147 (1980).CrossRefGoogle Scholar
  2. (2).
    S. J. Brodsky andG. P. Lepage:Phys. Rev. D,22, 2157 (1980).CrossRefADSGoogle Scholar
  3. (3).
    A. Duncan andA. H. Mueller:Phys. Rev. D,21, 1636 (1979).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    C. J. Bebek, C. N. Brown, S. D. Holmes, R. V. Kline, F. M. Pipkin, S. Raither, L. K. Sisterson, A. Browman, K. M. Hanson, D. Larson andA. Silverman:Phys. Rev. D,17, 1693 (1978).CrossRefADSGoogle Scholar
  5. (5).
    A. V. Efremov andA. V. Radyushkin:Phys. Lett. B,94, 245 (1980).CrossRefADSGoogle Scholar
  6. (6).
    A. I. Milshtein andV. S. Fadin:Yad. Fiz.,33, 1391 (1981).MathSciNetGoogle Scholar
  7. (7).
    S.-C. Chao:Phys. Rev. D,21, 3423 (1980).CrossRefADSGoogle Scholar
  8. (8).
    T. Appelquist andE. C. Poggio:Phys. Rev. D,10, 3280 (1974).CrossRefADSGoogle Scholar
  9. (9).
    A. V. Efremov andA. V. Radyushkin:Teor. Mat. Fiz.,30, 168 (1977).CrossRefGoogle Scholar
  10. (10).
    A. V. Efremov andA. V. Radyushkin:Teor. Mat. Fiz.,44, 327 (1980).Google Scholar
  11. (11).
    S. Mandelstam:Proc. R. Soc. London, Ser. A,233, 248 (1955).MathSciNetCrossRefADSMATHGoogle Scholar
  12. (12).
    N. N. Bogoliubov andD. V. Shirkov:Introduction to the Theory of Quantized Fields (Moscow, 1976).Google Scholar
  13. (13).
    O. I. Zavialov:Renormalized Feynman Diagrams (Moscow, 1979).Google Scholar
  14. (14).
    F.-M. Dittes andA. V. Radyushkin:Yad. Fiz.,34, 529 (1981).Google Scholar
  15. (15).
    H. Bateman andA. Erdelyi:Higher Transcendental Functions, Vol.2 (New York, N. Y., 1953).Google Scholar
  16. (16).
    V. A. Matveev, R. M. Muradyan andA. N. Tavkhelidze:Lett. Nuovo Cimento,7, 719 (1973).CrossRefGoogle Scholar
  17. (17).
    S. J. Brodsky andG. R. Farrar:Phys. Rev. Lett.,31, 1153 (1973).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • A. V. Efremov
    • 1
  • V. A. Nesterenko
    • 1
  • A. V. Radyushkin
    • 1
  1. 1.Laboratory of Theoretical PhysicsJINRDubnaUSSR

Personalised recommendations