Biologia Plantarum

, 29:38 | Cite as

Ferredoxin-dependent glutamate synthase activity during the first developmental stages of wheat plants as affected by calcium deficiency

  • Alena Činčerová
Original Papers


The delay in development of winter wheat plants grown under conditions of Ca deficiency manifested itself also in the time curve of ferredoxin-dependent glutamate synthase activity. Up to the stage of the first leaf the activity increased. Thereafter it gradually decreased similarly as under conditions of complete nutrition, but with a shift of about 7 days as compared with plants given complete nutrition. Increased glutamate synthase activity in Ca-deficient plants may be one of the factors leading to a high glutamate level under these conditions.


Glutamate Wheat Plant Nitrogen Assimilation Calcium Deficiency Pipecolic Acid 


  1. Bengtsson, B., Jensex, P.: Uptake of calcium in wheat and cucumber roots. - Physiol. Plant.55: 273–278, 1982.CrossRefGoogle Scholar
  2. Burström, H.: Studies on growth and metabolism of roots. X. Investigations of calcium effect. - Physiol. Plant.7: 332–342, 1954.CrossRefGoogle Scholar
  3. Černá, E.: Effect of calcium deficiency on free amino acids in wheat plants. - Acta Univ. Carolinae-Biol.1971: 379–383, 1974.Google Scholar
  4. Činčerová, A.: Effect of calcium deficiency on L-lysine-α-ketoglutarate aminotransferase in wheat plants. - Z. Pflanzenphysiol.80: 348–353, 1976.Google Scholar
  5. Činčerová, A., Černá, E.: Biosynthesis of plpecolic acid in calcium deficient wheat plants. - Z. Pflanzenphysiol.74: 366–370, 1974.Google Scholar
  6. Činčerová, A., Nečasová, L.: The regulatory effect of exogenous L-proline in Ca-deficient young wheat plants. - Z. Pflanzenphysiol.95: 323–333, 1979.Google Scholar
  7. Dougall, D. K.: Evidence for the presence of glutamate synthase in extracts of carrot cell cultures. - Biochem. biophs. Res. Commun.58: 639–646, 1974.CrossRefGoogle Scholar
  8. Epstein, E.: Essential role of calcium in selective cation transport by plant cells. - Plant Physiol.36: 437–444, 1961.PubMedGoogle Scholar
  9. Harper, J. E., Paulsen, G. M.: Nitrogen assimilation and protein synthesis in wheat seedlings as affected by mineral nutrition. I. Macronutrients. - Plant Physiol.44: 69–74, 1969.PubMedCrossRefGoogle Scholar
  10. Hetherington, A. M., Trewavas, A.: Activation of a pea membrane proteinkinase by calcium ions. - Planta161: 409–417, 1984.CrossRefGoogle Scholar
  11. Kohl, J. G.: Zur Bestimmung von Enzymaktivitäten in Rohextrakten pflanzlicher Gewebe. - Flora A160: 253–257, 1971.Google Scholar
  12. Laštůvka, Z., Minář, J.: [Method of nutrient solutions for higher plants.] In Czech.- Folia Fac. Sci. Univ. Purkynianae Brun. Biol.8: 1–83, 1967.Google Scholar
  13. Lea, P. J., Miflin, B. J.: An alternative route for nitrogen assimilation in higher plants. - Nature251: 614–616, 1974.PubMedCrossRefGoogle Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. - J. biol. Chem.193: 265–275, 1951.PubMedGoogle Scholar
  15. Marmé, D., Dieter, P.: Calcium and calmodulin-dependent regulation in higher plants. - Dev. Plant Biol.7: 111–113, 1982.Google Scholar
  16. Match, T., Takahashi, E.: Glutamate synthase in greening pea shoots. - Plant Cell Physiol.22: 727–731, 1981.Google Scholar
  17. Meravý, L.: The effect of calcium deficiency on the activity of ammonia lyases in the shikimic pathway. - Biol. Plant.21: 427–433, 1979.CrossRefGoogle Scholar
  18. Miflin, B. J., Wallsgrove, R. M., Lea, P. J.: Glutamine metabolism in higher plants. -In:Horecker, B. L., Stadtman, E. R. (ed.): Current Toplcs in Cellular Regulations, Vol. 20. Pp. 1–45. Academic Press, New York 1981.Google Scholar
  19. Nauen, W., Hartmann, T.: Glutamate dehydrogenase fromPisum sativum L. Localization of the multiple forms and of glutamate formation in isolated mitochondria. - Planta148: 7–16, 1980.CrossRefGoogle Scholar
  20. Nicklisch, A., Geske, W., Kohl, J. G.: Über die Bedeutung von Glutamatsynthase und Glutamatdehydrogenase für die N-Assimilation im Weizenprimärblatt. - Biochem. Physiol. Pflanzen170: 85–90, 1976.Google Scholar
  21. Novosadová, Z.: Studium Aktivity Glutaminsynthetasy při Nedostatku Vápníku u Pšenice. [A Study of Glutamine Synthetase Activity under Conditions of Ca-deficiency in wheat]. - Thesis. Faculty of Science, Charles University, Praha 1982.Google Scholar
  22. Novotká, D., Činčerová, A.: Nitrogen assimilation in young wheat plants as affected by macronutrients calcium and potassium. 1. Glutamate dehydrogenase. - Acta Univ. Carolinae- Biol.1982–1984: 1–7, 1985.Google Scholar
  23. Postius, C., Jacobi, G.: Dark starvation and plant metabolism. VI. Biosynthesis of glutamic acid dehydrogenase in detached leaves fromCucurbita maxima. - Z. Pflanzenphysiol.78: 132–140, 1976.Google Scholar
  24. San Pietro, A., Lang, H. M.: Photosynthetic pyridine nucleotide reductase I. Partial purification and properties of the enzyme from splnach. - J. biol. Chem.231: 211–229, 1958.PubMedGoogle Scholar
  25. Shin, M., Tagawa, K., Arnon, D. I.: Crystallization of ferredoxin-TPN reductase and its role in the photosynthetic apparatus of chloroplasts.- Biochem. Z.338: 84–96, 1963.PubMedGoogle Scholar
  26. Simon, E. V.: The symptoms of calcium deficiency in plants. - New Phytol.80: 1–15, 1978.CrossRefGoogle Scholar
  27. Tagawa, K., Arnon, D. I.: Ferredoxins as carriers in photosynthesis and in the biological production and consumption of hydrogen gas. - Nature195: 537–543, 1962.PubMedCrossRefGoogle Scholar
  28. Wallsgrove, R. M., Harel, E., Lea, P. J., Miflin, B. J.: Studies on glutamate synthase from the leaves of higher plants. - J. exp. Bot.28: 588–596, 1977.CrossRefGoogle Scholar

Copyright information

© Academia 1987

Authors and Affiliations

  • Alena Činčerová
    • 1
  1. 1.Department of Plant Physiology, Faculty of ScienceCharles UniversityPraha 2Czechoslovakia

Personalised recommendations