Biologia Plantarum

, Volume 25, Issue 3, pp 187–195 | Cite as

Incorporation of [14C]-glutamate into proteins and chlorophylls inDunaliella tertiolecta, a marine chlorophyte

  • R. Precali
  • P. G. Falkowski
Original Papers


Incorporation of [14C]-glutamate into soluble proteins accounted for about 14% of the total glutamate uptake, while < 1% of the ammo acid carbon was incorporated into chlorophylla. Most of the remaining 85% of the glutamate was retained in low molecular mass pools. High uptake rates appeared to be related to a “shift-up” phenomenon, resulting from the addition of fresh media. Apparent turnover times, estimated from reverse isotope dilution experiments, varied from about 1 to 3.5 h for the soluble proteins and about 3 to 5 h for chlorophyll a. Rapid changes in glutamate to glutamine ratios, resulting from changes in irradiance, suggest that the intermediary metabolism of glutamate is regulated by irradiance.


Chlorophyll Glutamate Glutamine Synthetase Aminolevulinic Acid Marine Plankton Diatom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used


δ-aminolevulinic acid


glutamic dehydrogenase


glutamate synthase


glutamine synthetase


photosynthetically active radiation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beale, S. I.: The biosynthesis of δ-aminolaevulinic acid in plants. - Phil. Trans. roy. Soc. London273: 99–108, 1976.CrossRefGoogle Scholar
  2. Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem.72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  3. Dugdale, R. C.: Nutrient modeling. - In:Goldberg, B. D., McCave, I. N., O’Brien, J. J., Steele, J. H. (ed.): The Sea. Vol. 6. Pp. 789–806. John Wiley & Sons, New York 1977.Google Scholar
  4. Falkowski, P. G.: Light-shade adaptation in marine phytoplankton. - In:Falkowski, P. G. (ed.): Primary Productivity in the Sea. Pp. 99–119. Plenum Press, New York 1980.Google Scholar
  5. Falkowski, P. G., Owens, T. G.: Light-shade adaptation: two strategies in marine phytoplankton. - Plant Physiol.66: 632–636, 1980.Google Scholar
  6. Falkowski, P. G., Owens, T. G., Ley, A. C., Mauzerall, D. C.: Effects cf growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. - Plant Physiol.68: 969–973, 1981.PubMedGoogle Scholar
  7. Falkowski, P. G., Sucher, J.: Rapid, quantitative separation of chlorophylls and their degradation products by high-performance liquid chromatography. - J. Chromatogr.213: 348 to 351, 1981.Google Scholar
  8. Goldman, J. C., Glibert, P. M.: Kinetics of inorganic nitrogen uptake by phytoplankton. - In:Carpenter, E. J., Capone, D. (ed.): Nitrogen in the Marine Environment. Academic Press, New York (in press).Google Scholar
  9. Guillard, R. R. L., Ryther, J. H.: Studies of marine planktonic diatoms. II. Use ofCyclotella nana (Hustedt) for assays of vitamin B12 in sea-water. - Can. J. Microbiol.8: 437–445, 1962.Google Scholar
  10. Jeffrby, S. W., Humphrey, G. F.: New spectrophotometric equations for determining chlorophyllsa, b, c1, and c2 in higher plants, algae and natural phytoplankton. - Biochem. Physiol. Pflanzen167: 191–194, 1975.Google Scholar
  11. Jones, R. F., Kates, J. R., Keller, S. J.: Protein turnover and macromolecular synthesis during growth and gametic differentiation inChlamydomonas reinhardtii. - Biochim. biophys. Acta157: 589–598, 1968.PubMedGoogle Scholar
  12. Miflin, B. J., Lea, P. J.: Ammonia assimilation. - In:Miflin, B. J. (ed.): The Biochemistry of Plants. Vol. 5. Pp. 169 - 202. Academic Press, New York 1980.Google Scholar
  13. Morton, K. A., Kushner, J. P., Burnham, B. F., Horton, W. J.: Biosynthesis of porphyrins and heme from γ, δ-dioxovalerate by intact hepatocytes. - Proc. nat. Acad. Sci. USA78: 5325–5328, 1981.PubMedCrossRefGoogle Scholar
  14. Owens, T. G., Falkowski, P. G.: Enzymatic degradation of chlorophylla by marine phytoplanktonin vitro. -Phytochemistry21: 979 - 984, 1982.CrossRefGoogle Scholar
  15. Owens, T. G., Riper, D. M., Falkowski, P. G.: Studies of δ-aminolevulinic acid dehydrase fromSkeletonema costatum, a marine plankton diatom. - Plant Physiol.62 : 516–521, 1978.PubMedGoogle Scholar
  16. Richards, L., Thurston, C. F.: Protein turnover inChlorella fusca var.vacuolala: Measurement of the overall rate of intracellular protein degradation using isctope exchange with water. - J. gen. Microbiol.121: 49–61, 1980.Google Scholar
  17. Riper, D. M., Owens, T. G., Falkowski, P. G.: Chlorophyll turnover inSkletonema costatum, a marine plankton diatom. - Plant Physiol.64: 49–54, 1979.PubMedCrossRefGoogle Scholar
  18. Schaechter, M.: Growth: cells and populations. - In:Mandelstam, J., McQuillan, K. (ed.): Biochemistry of Bacterial Cell Growth. Pp. 136–162. John Wiley & Sons, New York 1968.Google Scholar
  19. Wheeler, P. A., North, B. B., Stephens, G. G.: Ammo acid uptake by marine phytoplankters. -Limnol. Oceanogr.19: 249–259, 1974.CrossRefGoogle Scholar

Copyright information

© Academia 1983

Authors and Affiliations

  • R. Precali
    • 1
  • P. G. Falkowski
    • 2
  1. 1.Center for Marine ResearchInstitute “Rudjer Bošković”RovinjYugoslavia
  2. 2.Oceanographic Sciences DivisionBrookhaven National LaboratoryUptonUSA

Personalised recommendations