Chinese Science Bulletin

, Volume 49, Issue 1, pp 107–110 | Cite as

Preparation of double-walled carbon nanotubes

  • Bin Jiang
  • Jinquan Wei
  • Lijie Ci
  • Dehai Wu


Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200°C; the catalyst vapor temperature is 80 °C; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.


carbon nanotube double-walled carbon nanotube float-ing chemical vapor deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, S., Helical microtubes of graphitic carbon, Nature, 1991, 354: 56–58.CrossRefGoogle Scholar
  2. 2.
    Ren, W. C., Li, F., Chen, J. et al., Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane, Chem. Phys. Lett., 2002, 359: 196–202.CrossRefGoogle Scholar
  3. 3.
    Saito, R., Matsuo, R., Kimura, T. et al., Anomalous potential barrier of double-wall carbon nanotube, Chem. Phys. Lett., 2001, 348: 187–193.CrossRefGoogle Scholar
  4. 4.
    Tanaka, K., Aoki, H., Ago, H. et al., Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes, Carbon, 1997, 35: 121–125.CrossRefGoogle Scholar
  5. 5.
    Kwon, Y. K., Saito, S., Tomanek, D., Effect of intertube coupling on the electronic structure of carbon nanotube rope, Phys. Rev. B, 1998, 58: R13314.CrossRefGoogle Scholar
  6. 6.
    Nardelli, M. B., Brabec, C., Maiti, A. et al., Lip-lip interactions and the growth of multiwalled carbon nanotubes, Phys. Rev. Lett., 1998, 80: 313–316.CrossRefGoogle Scholar
  7. 7.
    Bandow, S., Takizawa, M., Hirahara, K. et al., Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, Chem. Phys. Lett., 2001, 337: 48–54.CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Iijima, S., Shi, Z. et al., Defects in arc-discharge-produced single-walled carbon nanotubes, Philos. Mag. Lett., 1999, 79: 473–479.CrossRefGoogle Scholar
  9. 9.
    Kataura, H., Kumazawa, Y., Kojima, N. et al., Resonance Raman scattering of Br2 doped single-walled carbon nanotube bundles, Mol. Cryst. Liq. Cryst., 2000, 340: 757–762.CrossRefGoogle Scholar
  10. 10.
    Hutchison, J. L., Kiselev, N. A., Krinichnaya, E. P. et al., Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon, 2001, 39: 761–770.CrossRefGoogle Scholar
  11. 11.
    Ci, L. J., Rao, Z. L., Zhou, Z. Q. et al., Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett., 2002, 359: 63–67.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.Institute of Physics, Center for Condensed Matter Physics, Group 412Chinese Academy of SciencesBeijingChina

Personalised recommendations