Skip to main content

Effect of GbKTN1 fromGossypium barbadense on cell elongation of fission yeast (Schizosaccharomyces pombe)


TheGbKTN1 gene was isolated from 10 DPA fiber cells ofGossypium barbadense using 5′RACE/3′RACE. Full-length cDNA of this gene is 2006 bp, including a 113 bp of 5′untranslated region, a 1563 bp of an open reading frame (ORF), and a 327 bp of 3′untranslated region (excluding the stop codon TAA). The ORF ofGbKTN1 encodes a 521-amino acid protein with a predicted size of 55 kD. Near C-terminal of the deduced protein there is a putative ATP binding site between amino acid residues from 233 to 414. Southern blot analysis indicated that theGbKTN1 was a single copy gene inG. barbadense. Combining semi-quantitative RT-PCR with Southern blot hybridization revealed thatGbKTN1 expressed in all the organs detected such as roots, stems, leaves and fibers. However, the mRNA ofGbKTN1 was the most abundant in fiber cells, while it was the lowest in leaves. TheGbKTN1 cDNA was transformed intoS. pombe to verify its function on cell elongation. Results showed that most yeast cells over expressingGbKTN1 gene were elongated dramatically with an average length increase of 2.18 times than that of the non-induced cells. Even the morphology of some yeast cells appeared irregularly. To the best of our knowledge this is the first evidence that KTN1 is correlated with cell elongationin vivo.

This is a preview of subscription content, access via your institution.


  1. 1.

    Graves, D. A., Steward, J. M., Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells, Planta, 1988, 175: 54–258.

    Article  Google Scholar 

  2. 2.

    Arioli, T., Peng, L., Betzner, A. S. et al., Molecular analysis of cellulose biosynthesis inArabidopsis, Science, 1998, 279: 717–720.

    Article  Google Scholar 

  3. 3.

    Burk, D. H., Liu, B., Zhong, R. et al., A katanin-like protein regulates normal cell wall biosynthesis and cell elongation, Plant Cell, 2001, 13: 807–827.

    Article  Google Scholar 

  4. 4.

    Burk, D. H., Ye, Z. H., Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein, Plant Cell, 2002, 14: 2145–2160.

    Article  Google Scholar 

  5. 5.

    Ha, M. A., MacKinnon, I. M., Sturcova, A. et al., Structure of cellulose-deficient secondary cell walls from the irx3 mutant ofArabidopsis thaliana, Phytochemistry, 2002, 61: 7–14.

    Article  Google Scholar 

  6. 6.

    Nicol, F., His, I., Jauneau, A. et al., A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation inArabidopsis, EMBO J., 1998, 17: 5563–5576.

    Article  Google Scholar 

  7. 7.

    Zuo, J., Niu, Q. W., Nishizawa, N. et al., KORRIGAN, anArabidopsis endo-1, 4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis, Plant Cell, 2000, 12: 1137–1152.

    Article  Google Scholar 

  8. 8.

    Kost, B., Mathur, J., Chua, N. H., Cytoskeleton in plant development, Curr. Opin. Plant Biol., 1999, 2: 462–470.

    Article  Google Scholar 

  9. 9.

    Kropf, D. L., Bisgrove, S. R., Hable, W. E., Cytoskeletal control of polar growth in plant cells, Curr. Opin. Cell Biol., 1998, 10: 117–122.

    Article  Google Scholar 

  10. 10.

    Quader, H., Herth, W., Ryser, U. et al., Cytoskeletal elements in cotton seed hair developmentin vitro: Their possible regulatory role in cell wall organization, Protoplasma, 1987, 137: 56–62.

    Article  Google Scholar 

  11. 11.

    Seagull, R., The effects of microtubules and microfilament disrupting agents on cyoskeletal arrays and wall deposition in developing cotton fibers, Protoplasma, 1990, 159: 44–59.

    Article  Google Scholar 

  12. 12.

    Baskin, T. L., The cyoskeleton, Biochemistry and Molecular Biology of Plants. (eds. Buchanan, B. B., Gruissem, W., Jones, R. L.) Rockville, M.D: American Society of Plant Physiologists, 2000, 202–258

    Google Scholar 

  13. 13.

    Bichet, A., Desnos, T., Turner, S. et al., BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion inArabidopsis, Plant J. 2001, 25: 137–148.

    Article  Google Scholar 

  14. 14.

    Vale, R. D., Severing of stable microtubules by a mitotically activated protein inXenopus egg extracts, Cell, 1991, 64: 827–839.

    Article  Google Scholar 

  15. 15.

    McNally, F. J., Okawa, K., Iwamatsu, A. et al., Katanin, the microtubule-severing ATPase, is concentrated at centrosomes, J. Cell. Sci., 1996, 109: 561–567.

    Google Scholar 

  16. 16.

    McNally, F. J., Thomas, S., Katanin is responsible for the M-phase microtubule-severing activity inXenopus eggs, Mol. Biol. Cell, 1998, 9: 1847–1861.

    Google Scholar 

  17. 17.

    Ahmad, F. J., Yu, W., McNally, F. J. et al., An essential role for katanin in severing microtubules in the neuron, J. Cell. Biol., 1999, 145: 305–315.

    Article  Google Scholar 

  18. 18.

    McNally, K. P., Buster, D., McNally, F. J., Katanin-mediated microtubule severing can be regulated by multiple mechanisms, Cell Motility & Cytoskeleton, 2002, 53: 337–349.

    Article  Google Scholar 

  19. 19.

    Stoppin-Mellet, V., Gaillard, J., Vantard, M., Plant katanin, a microtubule severing protein, Cell Biol. Int., 2003, 27: 279.

    Article  Google Scholar 

  20. 20.

    Cotton Research Institute, Chinese Academy of Agricultural Sciences, Cotton Cultivation in China (in Chinese), 1st ed., Shanghai: Shanghai Science & Technology Press, 1983, 123–133.

    Google Scholar 

  21. 21.

    Burton, R. A., Gibeaut, D. M., Bacic, A. et al., Virus-induced silencing of a plant cellulose synthase gene, Plant Cell, 2000, 12: 691–706.

    Article  Google Scholar 

  22. 22.

    Maundrell, K., Thiamine-repressible expression vectors pREP and pRIP for fission yeast, Gene, 1993, 123: 127–130.

    Article  Google Scholar 

  23. 23.

    Confalonieri, F., Duguet, M., A 200-amino acid ATPase module in search of a basic function, Bioessays, 1995, 17: 639–650.

    Article  Google Scholar 

  24. 24.

    Xia, G., Ramachandran, S., Hong, Y. et al., Identification of plant cytoskeleton, cell cycle-related and polarity-related genes usingSchizosaccaromycespombe, Plant J., 1996, 10: 761–769.

    Article  Google Scholar 

  25. 25.

    Hartman, J. J., Mahr, J., McNally, K. et al., Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit, Cell, 1998, 93: 277–287.

    Article  Google Scholar 

  26. 26.

    Srayko, M., Buster, D. W., Bazirgan, O. A. et al., MEI-1/MEI-2 katanin-like microtubule severing activity is required forCaenorhabditis elegans meiosis, Genes Dev., 2000, 14: 1072–1084.

    Google Scholar 

  27. 27.

    Carpita, N., McCann, M., The cell wall, Biochemistry and Molecular Biology of Plants (eds. Buchanan, B. B., Gruissem, W., Jones, R. L.), Rockville, M. D: American Society of Plant Physiologists, 2000, 52–108.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shirong Jia.

About this article

Cite this article

Li, W., Wang, Z. & Jia, S. Effect of GbKTN1 fromGossypium barbadense on cell elongation of fission yeast (Schizosaccharomyces pombe). Chin. Sci. Bull. 49, 23–28 (2004).

Download citation


  • Sea Island cotton (G. barbadense)
  • GbKTN1
  • gene expression
  • fission yeast
  • cell elongation