Advertisement

Chinese Science Bulletin

, Volume 49, Issue 1, pp 23–28 | Cite as

Effect of GbKTN1 fromGossypium barbadense on cell elongation of fission yeast (Schizosaccharomyces pombe)

  • Weimin Li
  • Zhixing Wang
  • Shirong Jia
Articles

Abstract

TheGbKTN1 gene was isolated from 10 DPA fiber cells ofGossypium barbadense using 5′RACE/3′RACE. Full-length cDNA of this gene is 2006 bp, including a 113 bp of 5′untranslated region, a 1563 bp of an open reading frame (ORF), and a 327 bp of 3′untranslated region (excluding the stop codon TAA). The ORF ofGbKTN1 encodes a 521-amino acid protein with a predicted size of 55 kD. Near C-terminal of the deduced protein there is a putative ATP binding site between amino acid residues from 233 to 414. Southern blot analysis indicated that theGbKTN1 was a single copy gene inG. barbadense. Combining semi-quantitative RT-PCR with Southern blot hybridization revealed thatGbKTN1 expressed in all the organs detected such as roots, stems, leaves and fibers. However, the mRNA ofGbKTN1 was the most abundant in fiber cells, while it was the lowest in leaves. TheGbKTN1 cDNA was transformed intoS. pombe to verify its function on cell elongation. Results showed that most yeast cells over expressingGbKTN1 gene were elongated dramatically with an average length increase of 2.18 times than that of the non-induced cells. Even the morphology of some yeast cells appeared irregularly. To the best of our knowledge this is the first evidence that KTN1 is correlated with cell elongationin vivo.

Keywords

Sea Island cotton (G. barbadenseGbKTN1 gene expression fission yeast cell elongation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graves, D. A., Steward, J. M., Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells, Planta, 1988, 175: 54–258.CrossRefGoogle Scholar
  2. 2.
    Arioli, T., Peng, L., Betzner, A. S. et al., Molecular analysis of cellulose biosynthesis inArabidopsis, Science, 1998, 279: 717–720.CrossRefGoogle Scholar
  3. 3.
    Burk, D. H., Liu, B., Zhong, R. et al., A katanin-like protein regulates normal cell wall biosynthesis and cell elongation, Plant Cell, 2001, 13: 807–827.CrossRefGoogle Scholar
  4. 4.
    Burk, D. H., Ye, Z. H., Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein, Plant Cell, 2002, 14: 2145–2160.CrossRefGoogle Scholar
  5. 5.
    Ha, M. A., MacKinnon, I. M., Sturcova, A. et al., Structure of cellulose-deficient secondary cell walls from the irx3 mutant ofArabidopsis thaliana, Phytochemistry, 2002, 61: 7–14.CrossRefGoogle Scholar
  6. 6.
    Nicol, F., His, I., Jauneau, A. et al., A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation inArabidopsis, EMBO J., 1998, 17: 5563–5576.CrossRefGoogle Scholar
  7. 7.
    Zuo, J., Niu, Q. W., Nishizawa, N. et al., KORRIGAN, anArabidopsis endo-1, 4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis, Plant Cell, 2000, 12: 1137–1152.CrossRefGoogle Scholar
  8. 8.
    Kost, B., Mathur, J., Chua, N. H., Cytoskeleton in plant development, Curr. Opin. Plant Biol., 1999, 2: 462–470.CrossRefGoogle Scholar
  9. 9.
    Kropf, D. L., Bisgrove, S. R., Hable, W. E., Cytoskeletal control of polar growth in plant cells, Curr. Opin. Cell Biol., 1998, 10: 117–122.CrossRefGoogle Scholar
  10. 10.
    Quader, H., Herth, W., Ryser, U. et al., Cytoskeletal elements in cotton seed hair developmentin vitro: Their possible regulatory role in cell wall organization, Protoplasma, 1987, 137: 56–62.CrossRefGoogle Scholar
  11. 11.
    Seagull, R., The effects of microtubules and microfilament disrupting agents on cyoskeletal arrays and wall deposition in developing cotton fibers, Protoplasma, 1990, 159: 44–59.CrossRefGoogle Scholar
  12. 12.
    Baskin, T. L., The cyoskeleton, Biochemistry and Molecular Biology of Plants. (eds. Buchanan, B. B., Gruissem, W., Jones, R. L.) Rockville, M.D: American Society of Plant Physiologists, 2000, 202–258Google Scholar
  13. 13.
    Bichet, A., Desnos, T., Turner, S. et al., BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion inArabidopsis, Plant J. 2001, 25: 137–148.CrossRefGoogle Scholar
  14. 14.
    Vale, R. D., Severing of stable microtubules by a mitotically activated protein inXenopus egg extracts, Cell, 1991, 64: 827–839.CrossRefGoogle Scholar
  15. 15.
    McNally, F. J., Okawa, K., Iwamatsu, A. et al., Katanin, the microtubule-severing ATPase, is concentrated at centrosomes, J. Cell. Sci., 1996, 109: 561–567.Google Scholar
  16. 16.
    McNally, F. J., Thomas, S., Katanin is responsible for the M-phase microtubule-severing activity inXenopus eggs, Mol. Biol. Cell, 1998, 9: 1847–1861.Google Scholar
  17. 17.
    Ahmad, F. J., Yu, W., McNally, F. J. et al., An essential role for katanin in severing microtubules in the neuron, J. Cell. Biol., 1999, 145: 305–315.CrossRefGoogle Scholar
  18. 18.
    McNally, K. P., Buster, D., McNally, F. J., Katanin-mediated microtubule severing can be regulated by multiple mechanisms, Cell Motility & Cytoskeleton, 2002, 53: 337–349.CrossRefGoogle Scholar
  19. 19.
    Stoppin-Mellet, V., Gaillard, J., Vantard, M., Plant katanin, a microtubule severing protein, Cell Biol. Int., 2003, 27: 279.CrossRefGoogle Scholar
  20. 20.
    Cotton Research Institute, Chinese Academy of Agricultural Sciences, Cotton Cultivation in China (in Chinese), 1st ed., Shanghai: Shanghai Science & Technology Press, 1983, 123–133.Google Scholar
  21. 21.
    Burton, R. A., Gibeaut, D. M., Bacic, A. et al., Virus-induced silencing of a plant cellulose synthase gene, Plant Cell, 2000, 12: 691–706.CrossRefGoogle Scholar
  22. 22.
    Maundrell, K., Thiamine-repressible expression vectors pREP and pRIP for fission yeast, Gene, 1993, 123: 127–130.CrossRefGoogle Scholar
  23. 23.
    Confalonieri, F., Duguet, M., A 200-amino acid ATPase module in search of a basic function, Bioessays, 1995, 17: 639–650.CrossRefGoogle Scholar
  24. 24.
    Xia, G., Ramachandran, S., Hong, Y. et al., Identification of plant cytoskeleton, cell cycle-related and polarity-related genes usingSchizosaccaromycespombe, Plant J., 1996, 10: 761–769.CrossRefGoogle Scholar
  25. 25.
    Hartman, J. J., Mahr, J., McNally, K. et al., Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit, Cell, 1998, 93: 277–287.CrossRefGoogle Scholar
  26. 26.
    Srayko, M., Buster, D. W., Bazirgan, O. A. et al., MEI-1/MEI-2 katanin-like microtubule severing activity is required forCaenorhabditis elegans meiosis, Genes Dev., 2000, 14: 1072–1084.Google Scholar
  27. 27.
    Carpita, N., McCann, M., The cell wall, Biochemistry and Molecular Biology of Plants (eds. Buchanan, B. B., Gruissem, W., Jones, R. L.), Rockville, M. D: American Society of Plant Physiologists, 2000, 52–108.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations