Advertisement

Terrain topographic inversion using single-pass polarimetric SAR image data

  • Yaqiu Jin
  • Lin Luo
Article
  • 81 Downloads

Abstract

The shift of polarization orientation angleΨ at the maximum of co-polarized or cross-polarized back-scattering signature can be used to estimate the surface slopes. It has been utilized to generate the digital elevation mapping (DEM) and terrain topography using two-pass fully polarimetric SAR or interferometric SAR (INSAR) image data. This paper presents an approach to DEM inversion by using a single pass of polarimetric SAR data. TheΨ shift is derived, by using the Mueller matrix solution, as a function of three Stokes parameters,I vs, Ihs, Us, which are measured by the SAR polarimetry. Using the Euler angles transformation, the orientation angleΨ is related to both the range and azimuth angles of the tilted surface and radar viewing geometry, as has been discussed by many authors. When only a single-pass SAR data is available, the adaptive thresholding method and image morphological thinning algorithm for linear textures are proposed to first determine the azimuth angle. Then, making use of full multi-grid algorithm, both the range and azimuth angles are utilized to solve the Poisson equation of DEM to produce the terrain topography.

Keywords

single pass fully polarimetric Stokes parameters shift azimuth and range angles terrain topography DEM 

References

  1. 1.
    Jin, Y. Q., Electromagnetic Scattering Modelling for Quantitative Remote Sensing, Singapore: World Scientific, 1994.Google Scholar
  2. 2.
    Lee, J. S., Jansen, R. W., Schuler, D. L., Polarimetric analysis and modeling of multi-frequency SAR signatures from Gulf stream fronts, IEEE Journal of Oceanic Engineering, 1998, 23: 322–333.CrossRefGoogle Scholar
  3. 3.
    Schuler, D. L., Lee, J. S., Answorth, T. L. et al., Terrain topography measurements using multipass polarimetric synthetic aperture radar data, Radio Science, 2000, 35: 813–832.CrossRefGoogle Scholar
  4. 4.
    Lee, J. S., Schuler, D. L., Answorth, T. L., Polarimetric SAR data compression for terrain azimuthal slope variation, IEEE Transaction on Geoscience Remote Sensing, 2000, 38(5): 2153–2163.CrossRefGoogle Scholar
  5. 5.
    Schuler, D. L., Answorth, T. L., Lee J. S., Topographic mapping using polarimetric SAR data, Int. J. Remote Sensing, 1998, 19(1): 141–160.CrossRefGoogle Scholar
  6. 6.
    Castleman, K. R., Digital Image Processing, New York: Prentice Hall, 1996.Google Scholar
  7. 7.
    Chan, F. H. Y., Lam, F. K., Zhu Hui, Adaptive thresholding by variational method, IEEE Transaction on Geoscience Remote Sensing, 1998, 7(3): 468–473.Google Scholar
  8. 8.
    Pritt, M. D., Phase unwrapping by means of multi-grid techniques for interferometric SAR, IEEE Transaction on Geoscience Remote Sensing, 1996, 34: 728–738.CrossRefGoogle Scholar
  9. 9.
    Takajo, H., Takahashi, T., Least-squares phase estimation from phase difference, J. Opt. Soc. Amer. A, 1998, 5: 416–425.MathSciNetGoogle Scholar
  10. 10.
    Ghiglia, D. C., Romero, L. A., Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Amer. A, 1994, 11(1): 107–117.CrossRefGoogle Scholar
  11. 11.
    Pritt, M. D., Shipman, J. S., Least-squares two-dimensional phase unwrapping using FFT’s, IEEE Transaction on Geoscience Remote Sensing, 1994, 32(3): 706–708.CrossRefGoogle Scholar
  12. 12.
    Demmel, J., Applied Numerical Linear Algebra, Philadelphia: Society for Industrial and Applied Mathematics, 1997.MATHGoogle Scholar
  13. 13.
    China Integrative Atlas, Beijing: China Map Publishing Company, 1990, 151.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Key Laboratory of Wave Scattering and Remote Sensing Information (Ministry of Education)Fudan UniversityShanghaiChina

Personalised recommendations