Analysis in Theory and Applications

, Volume 20, Issue 2, pp 158–166 | Cite as

An approximation method to estimate the Hausdorff measure of the Sierpinski gasket

  • Ruan Huojun
  • Su Weiyi


In this paper, we firstly define a decreasing sequence {Pn(S)} by the the generation of the Sierpinski gasket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdorff measure Hs(S) of the Sierpinski gasket S can be approximated by {Pn(S)} with Pn(S)/1+1/2n−3)8≤Hs(S)≤Pn(S). An algorithm is presented to get Pn(S) for n≤5. As an application, we obtain the best lower bound of Hs(S) till now: Hs(S)≥0.5631.

Key words

Hausdorff measure sierpinski gasket approximation method 

AMS(2000)subject classification

28A78 28A80 68W25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [F90]
    Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, (New York: John Wiley & Sons), 1990.MATHGoogle Scholar
  2. [JZZ]
    Jia Baoguo, Zhu Zhiwei and Zhou Zuoling, Hausdorff Measure of Sierpinski Gasket and Self-Product Sets of Cantor Sets (in Chinese), Zhongshan University, preprint, 2001Google Scholar
  3. [M87]
    Marion, J., Measure de Hausdorff D'ensembles Fractals, Ann. Sci. Math. Quebec 11(1987), 111–137.MATHMathSciNetGoogle Scholar
  4. [AS99]
    Ayer, E. and Strichartz, R. S., Exact Hausdorff Measure and Intervals of Maximum Density for Cantor Sets, Trans. Amer. Math. Soc., 351 (1999), 3725–3741.MATHCrossRefMathSciNetGoogle Scholar
  5. [W99]
    Wang, X.H., Estimation and Cconjecture of the Hausdorff Measure of Sierpinski Gasket (in Chinese), Prog. Nat. Sci., 9(1999), 488–493.Google Scholar
  6. [Z97A]
    Zhou, Z.L., The Hausdorff Measures of the Koch Ccurve and Sierpinski Gasket (in Chinese), Prog. Nat. Sci., 7(1997), 403–409.Google Scholar
  7. [Z97B]
    Zhou, Z.L., Hausdorff Measure of Sierpinski Gasket, Sci. China (Series A), 40(1997), 1016–1021.MATHCrossRefGoogle Scholar
  8. [ZF00]
    Zhou, Z.L. and Feng, L., A New Eestimate of the Hausdorff Measure of the Sierpinski Gasket, Nonlinearity, 13(2000), 479–491.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang UniversityHangzhouP. R. China
  2. 2.Department of MathematicsNanjing UniversityNanjingP.R. China

Personalised recommendations