Advertisement

Chinese Science Bulletin

, Volume 46, Issue 22, pp 1908–1911 | Cite as

Carbonate dissolution and deep-water paleoceanography of the South China Sea since the Middle Pleistocene

  • Baohua Li
  • Quanhong Zhao
  • Min-Pen Chen
  • Zhinmin Jian
  • Pinxian Wang
Notes

Abstract

Based on the data of oxygen isotope, micropaleontology and paleomagnetism, we set up the detailed chronology of Core 17957-2 from the southern South China Sea and discuss the change of carbonate dissolution over the last 800 ka. Down-core variation of carbonate content records the “Pacific-type” cycle of higher glacial values and lower interglacial values, though the core lies above the modern lysocline. Carbonate dissolution indices indicate that several severe dissolution of CaCO3happened during the transition from interglacial to glacial stages. Spectral analyses of these indices show that the carbonate dissolution periodicities are mainly made up of 500 ka and 100 ka. Compared with the cycles of carbonate dissolution of the Indian Ocean, the long-term (500-ka) periodicity reflects the characteristic of the deep-water circulation of the oceans.

Keywords

Pleistocene South China Sea carbonate dissolution deep-water paleoceanography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bian, Y., Wang, P., Zheg, L., Late Quaternary dissolutions cycle of Planktonic Foraminifera in the northern South China Sea, in Contributions to Late Quaternary Paleoceanography of the South China Sea (eds. Ye, Z., Wang, P.) (in Chinese with English abstract), Qingdao: Qingdao Ocean University Press, 1992, 261–273.Google Scholar
  2. 2.
    Wang, P., Glacial carbonate cycles in western Pacific marginal seas, Marine Geology and Quaternary Geology (in Chinese with English abstract), 1998, 18(1): 1.Google Scholar
  3. 3.
    Wang, P. et al., The South China Sea During the Last 150,000 Years (in Chinese), Shanghai: Tongji University Press, 1995, 1–184.Google Scholar
  4. 4.
    Fang, D., Jian, Z., Wang, P., Productivity records for the past 30ka in the southern Nansha area, the South China Sea, Chinese Science Bulletin, 2000, 45(13): 1227CrossRefGoogle Scholar
  5. 5.
    Wang, L., Sarnthein, M., Erlenkeuser, H. et al., East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea, Marine Geology, 1999, 156: 245.CrossRefGoogle Scholar
  6. 6.
    Chen, M., Tu, X., Zheng, F. et al., Relation between sedimentary sequence and paleoclimate changes during the last 200ka in the South China Sea, Chinese Science Bulletin, 2000, 45(14): 1334CrossRefGoogle Scholar
  7. 7.
    Crowley, T. J., Depth-dependent carbonate dissolution changes in the eastern North Atlantic during the last 170,000 years, Marine Geology, 1983, 54: M25.CrossRefGoogle Scholar
  8. 8.
    Sarnthein, M., Pflaumann, U., Wang, P. et al. (eds.), Preliminary Report on Sonne-95 Cruise “Monitor Monsoon” to the South China Sea, Berichte-Reports, Geol.-Paläont. Inst. Univ. Kiel, 1994, 68: 1.Google Scholar
  9. 9.
    Le, J., Shackleton, N. J., Carbonate dissolution fluctuation in the western equatorial Pacific during the late Quaternary, Paleoceanography, 1992, 7(1): 21–42.CrossRefGoogle Scholar
  10. 10.
    Thompson, P. R., Bé, A. W. H., Duplessy, J.-C., Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans, Nature, 1979, 280: 554.CrossRefGoogle Scholar
  11. 11.
    Thierstein, H. R., Geitzenauer, K. R., Molfinao, B. et al., Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotopes, Geology, 1977, 5: 400.CrossRefGoogle Scholar
  12. 12.
    Wei, W., Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope strtigraphy, Paleoceanography, 1993, 8(1): 85.CrossRefGoogle Scholar
  13. 13.
    Prell, W. L., Imbrie, J., Martinson, D. G., et al., Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary, Paleoceanography, 1986, 1(2): 137.CrossRefGoogle Scholar
  14. 14.
    Zhao, Q., Jian, Z., Li, B. et al., Microtektites in the deep sea core of South China Sea at 780,000 yr B.P. and its significance, Science in China, Series D, 1999, 42(5): 531CrossRefGoogle Scholar
  15. 15.
    Shackleton, N. J., Berger, A., Peltier, W. R., An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677, Transactions of the Royal Society of Edinburgh: Earth Sciences, 1990, 81: 251.Google Scholar
  16. 16.
    Berger, W. H., Yasuda, M. K., Bickert, T. et al., Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program, Geology, 1994, 22: 463CrossRefGoogle Scholar
  17. 17.
    Berggren, W. A., Kent, D. V., Swisher, C. C. et al., A revised Cenozoic geochronology and chronostratigraphy (eds. Berggren, W. A., Kent, D. V., Aubry, M.-P. et al.), Geochronology Time Scales and Global Stratigraphic Correlation, SEMP Special Publication, 1995, 54: 129.Google Scholar
  18. 18.
    Peterson, L. C., Prell, W. L., Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean: preservation patterns and carbonate loss above the lysocline, Marine Geology, 1985, 64: 259.CrossRefGoogle Scholar
  19. 19.
    Li, C., Deep water carbonate sedimentation of the South China Sea. Acta Sedimentologica Sinica, 1989, 7(2): 35.Google Scholar
  20. 20.
    Vincent, E., Carbonate stratigraphy of Hess Rise, central north Pacific and paleoceanographic implications, Initial Report of Deep Sea Drilling Project, 1981, 62: 571.Google Scholar
  21. 21.
    Gardner, J. V., High-resolution carbonate and organic-carbon stratigraphies for the late Neogene and Quaternary from the Western Caribbean and east equatorial Pacific, Initial Report of Deep Sea Drilling Project, 1982, 68: 347.Google Scholar
  22. 22.
    Bassinot, F. C., Beaufort, L., Vincent, E. et al., Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Oceans: a 1500-kyr record of carbonate dissolution, Paleoceanography, 1994, 9(4): 579.CrossRefGoogle Scholar
  23. 23.
    Farrel, J. W., Prell, W. L., Climatic change and CaCO3 preservation: a 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean, Paleoceanography, 1989, 4(4): 447.CrossRefGoogle Scholar
  24. 24.
    Thunell, R. C., Miao, Q., Calvert, S. E. et al., Glacial-Holocene biogenic sedimentation patterns in the South China Sea: productivity variations and surface water pCO2, Paleoceanography, 1992, 7: 143.CrossRefGoogle Scholar
  25. 25.
    Schulz, M. and Stattegger, K., Spectral analysis of unevenly spaced paleoclimatic time series, Computers and Geosciences, 1997, 23: 929.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Baohua Li
    • 1
    • 2
  • Quanhong Zhao
    • 2
  • Min-Pen Chen
    • 3
  • Zhinmin Jian
    • 2
  • Pinxian Wang
    • 2
  1. 1.Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
  2. 2.Laboratory of Marine GeologyTongji UniversityShanghaiChina
  3. 3.Institute of OceanographyTaiwan UniversityTaiwanChina

Personalised recommendations