Chinese Science Bulletin

, Volume 49, Issue 5, pp 462–466 | Cite as

Identification and analysis of ARS function of six plant MARs



Six plant MARs isolated from tobacco and Arabdiposis were investigated for their ARS activity in yeast. The results showed that among the six plant MARs, only TM1 and AM4 had strong ARS activity which was almost the same as that of ARS from yeast chromosome. In order to further identify the core region of the two MARs for the ARS activity, a series of subclones were created by PCR strategy, and the corresponding subclones were designated as TM1-1, TM1-2, TM1-3, AM4-1, AM4-2 and AM4-3, respectively. Our studies revealed that TM1-3 and AM4-3 not only had higher ARS activity, but also displayed higher transformation frequency, plasmid stability and growth rate compared to their intact MARs, TM1 and AM4. These data present an important clue for further elucidating the relationship between MAR and ARS.


plant MAR ARS activity yeast transformation frequency sequence analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mesner, L. D., Hamlin, J. L., Dijkwel, P. A., The matrix attachment region in the Chinese hamster dihydrofolate reductase origin of replication may be required for local chromatid separation, Proc. Natl. Acad. Sci. USA., 2003, 100(6): 3281–3296.PubMedCrossRefGoogle Scholar
  2. 2.
    Pikaard, C. S., Chromosome topology-organizing genes by loops and bounds, Plant Cell, 1998, 10: 1229–1232.PubMedCrossRefGoogle Scholar
  3. 3.
    Tikhonov, A. P., Bennetzen, J. L., Avramova, Z. V., Structural domains and matrix attachment regions along collinear chromosomal segments of maize and sorghum, Plant Cell, 2000, 12: 249–264.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang, K. W., Wang, J. M., Yang, G. D. et al., Isolation of a strong matrix attachment region(MAR) and identification of its functionin vitro andin vivo, Chinese Science Bulletin, 2002, 47(23): 1999.CrossRefGoogle Scholar
  5. 5.
    Struhl, K., Stinchcomb, D. T., Sherer, S. et al., High frequency transformation of yeast: Autonomous replication of hybridization DNA molecules, Proc. Natl. Acad. Sci. USA, 1979, 76(3): 1035–1039.PubMedCrossRefGoogle Scholar
  6. 6.
    Hsiao, C. L., Carbon, J., High frequency transformation of yeast by plasmids containing the cloned yeastARG4 gene, Proc. Natl. Acad. Sci. USA, 1979, 76(8): 3829–3833.PubMedCrossRefGoogle Scholar
  7. 7.
    Bielinsky, A. K., Gerb, S. A., Discrete start sites for DNA synthesis in the yeast ARSI origin, Science, 1998, 279(2): 95–98.PubMedCrossRefGoogle Scholar
  8. 8.
    Bielinsky, A. K., Blitzblau, H., Beall, E. L. et al., Origin recognition complex binding to a metazoan replication origin, Curr. Biol., 2001, 11(18): 1427–1431.PubMedCrossRefGoogle Scholar
  9. 9.
    Amati, B., Gasser, S. M., Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold, Cell, 1988, 54: 967–978.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen, Y., Zhao, M., Li, Z. P. et al., The function of the nuclear matrix attachment region of silkworm rDNA as an autonomously replicating sequence in plasmid and chromosomal replication origin in yeast, Biochem. Biophys. Res. Commun., 2002, 299(5): 723–729.PubMedCrossRefGoogle Scholar
  11. 11.
    David, M. G., Making sense of eukaryotic DNA replication origins, Science, 2001, 294(5): 96–100.CrossRefGoogle Scholar
  12. 12.
    Sykes, R. C., Lin, D. H., Wang, S. J. et al., Yeast ARS function and nuclear matrix association coincide in a short sequence from the human HPRT locus, Mol. Gen. Genet., 1988, 212(2): 301–309.PubMedCrossRefGoogle Scholar
  13. 13.
    Valenzuela, M. S., An autonomously replicating sequence from Hela DNA shows a similar organization to the yeast ARS element, Mol. Gen. Genet., 1990, 220(1): 361–365.PubMedCrossRefGoogle Scholar
  14. 14.
    Stinchcomb, D. T., Thoms, M., Kelly, J. et al., Eukaryotic DNA segments capable of autonomous replication in yeast, Proc. Natl. Acad. Sci. USA, 1980, 77: 4559–4563.PubMedCrossRefGoogle Scholar
  15. 15.
    Kearsey, S., Structural requirements for the function of a yeast chromosomal replicator, Cell, 1984, 37(1): 299–307.PubMedCrossRefGoogle Scholar
  16. 16.
    Vassetzky, Y. S., Bogdanova, A. N., Razin, S. V. et al., Analysis of the chicken DNA fragments that contain structural sites of attachment to the nuclear matrix: DNA-matrix interactions and replication, J. Cell Biochem., 2000, 79: 1–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Brun, C., Dang, Q., Niassod, R., Studies of an 800-kilobase DNA strech of theDrosophila X-chromosome: Co-mapping of a subclass of scaffold-attached regions with sequences able to replicate autonomously inSaccharomyces cerevisiae, Mol. Cell. Biol., 1990, 10: 5455–5466.PubMedGoogle Scholar
  18. 18.
    Sikorski, R. S., Hieter, P. A., System of shuttle vectors and yeast host strains designed for efficient manipulation of DNA inSaccharomyces cerevisiae, Genetics, 1989, 122: 19–27.PubMedGoogle Scholar
  19. 19.
    Amati, B., Gasser, S. M., Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts, Mol. Cell. Biol., 1990, 10: 5442–5454.PubMedGoogle Scholar
  20. 20.
    Dani, G. M., Zakian, V. A., Mitotic and meiotic stability of linear plasmids in yeast, Proc. Natl. Acad. Sci. USA, 1983, 80: 3406–3410.PubMedCrossRefGoogle Scholar
  21. 21.
    Michalowski, S. M., George, C. A., Gerald, E. H. et al., Characterization of randomly-obtained matrix attachment regions (MAR) from higher plants, Biochemistry, 1999, 38: 12795–12804.PubMedCrossRefGoogle Scholar
  22. 22.
    Marahrens, Y., Stillman, B., A yeast chromosomal origin of DNA replication defined by multiple functional elements, Science, 1992, 255: 817.PubMedCrossRefGoogle Scholar
  23. 23.
    Rosemary, K. C., Thomas, J. K., Identification of autonomously replicating sequence (ARS) elements in eukaryotic cells, Methods: A companion to methods in Enzymology, 1997, 13: 221–233.CrossRefGoogle Scholar
  24. 24.
    Amati, B., Pick, L., Laroche, T. et al., Nuclear scaffold attachment stimulates, but is not essential for ARS activity inSaccharomyces cerevisiae: analysis of theDrosophila ftz SAR, EMBO J., 1990, 9: 4007–4016.PubMedGoogle Scholar
  25. 25.
    Lagarkova, M. A., Svetlova, E., Giacca, M. et al., A DNA loop anchorage region colocalizes with the replication origin located downstream to the human gene encoding lamin B2, J. Cell Biochem., 1998, 69: 13–18.PubMedCrossRefGoogle Scholar
  26. 26.
    Mielke, C., Maass, K., Tummler, M. et al., Anatomy of highly expressing chromosomal sites targeted by retroviral vectors, Biochemistry, 1996, 35: 2239–2252.PubMedCrossRefGoogle Scholar
  27. 27.
    Bell, S. P., Stillman, B., ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex, Nature, 1992, 357: 563–568.CrossRefGoogle Scholar
  28. 28.
    Marilley, M., Structure-function relationships in replication origins of the yeast Saccharomyces cerevisiae: Higher-order structural organization of DNA in regions flanking the ARS1 consensus sequence, Mole. Gen. Genet., 2000, 263 (5): 854–866.CrossRefGoogle Scholar
  29. 29.
    Spiler, S., Thompson, W. F., Nuclear matrix attachment regions and transgene expression in plants, Plant Physiol., 1996, 110: 15–21.Google Scholar
  30. 30.
    Breyne, P., Montogu, M., Gheysen, G., The role of scaffold attachment region in the structure and functional organizational of plant chromatin, Transgenic Res., 1994, 3: 195–202.PubMedCrossRefGoogle Scholar
  31. 31.
    Allen, G. C., Spiker, S., Thompson, W. F., Use of matrix attachment regions (MARs) to minimize transgene silencing, Plant. Mol. Biol., 2000, 43: 361–376.PubMedCrossRefGoogle Scholar
  32. 32.
    Li, X. G., Zhou, Z., Xu, J. W. et al., Isolation of pea matrix attachment region and study on its function in transgenic tobaccos, Science in China, Ser. C., 2001, 31(3): 230–237.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Hong Li
    • 1
  • Yutao Yang
    • 1
  • Kewei Zhang
    • 1
  • Chengchao Zheng
    • 1
  1. 1.College of Life SciencesShandong Agriculture UniversityTai’anChina

Personalised recommendations