Chinese Science Bulletin

, 46:1638 | Cite as

In vitro culture of embryonic hearts from guppy fish (Poecilia reticulata)

  • Qiya Zhang
  • Zhenqiu Li
  • Jianfang Gui


Forty embryonic hearts were taken out by anatomical needle from denuded embryos of the ovoviviparity guppy fish that were dechorioned by mechanic method or by trypsin digestion, and werein vitro cultured. In the cultured hearts, 80% have maintained beatingin vitro for 4 weeks, and the longest record for beating was 142 d. Owing to fish embryo transparency, beating frequency and blood color changes are easily viewed from the embryonic hearts under a dissecting microscope. The current study established thein vitro culture method of embryonic hearts in guppy fish, which can be used as a model for the study of heart and cardiovascularf system in vertebrates.


guppy fish embryo heart in vitro culture 


  1. 1.
    Christoffels, V. M., Habets, P. E. M. H., Franco, D. et al., Chamber formation and morphogenesis in the developing mammalian heart. Developmental Biology, 2000, 223: 266.CrossRefGoogle Scholar
  2. 2.
    Bao, L., Use your cell make your heart, Science News Weekly, 2000, 39: 24.Google Scholar
  3. 3.
    Hoerstrup, S. P., Sodian, R., Daebritz, S. et al., Functional living trileaflet heart valves grownin vitro, Circulation, 2000, 102(19 Suppl 3): III 44.Google Scholar
  4. 4.
    Satoh, N., Suter, T. M., Liao, R. et al., Chronic alpha-adrenergic receptor stimulation modulates the contractile phenotype of cardiac myocytesin vitro, Circulation, 2000, 102(18): 2249.Google Scholar
  5. 5.
    Gui, J.F., Fish developmental genetics and artificial propagation, in Fish Genetics and Breeding Engineering (eds. Wu, C., Gui, J. F.), Shanghai: Shanghai Scientific and Technical Press, 1999, 41.Google Scholar
  6. 6.
    Gui, J. F., Zebrafish, an ideal model animal for molecular developmental biology, Progresses in Bioengineering, 1995, 15(3): 30.Google Scholar
  7. 7.
    Hong, Y., Winkler, C., Schartl, M., Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes), Mechanisms of Development, 1996, 60: 33.CrossRefGoogle Scholar
  8. 8.
    Zon, L., Developmental biology of hematopoiesis, Blood, 1995, 86: 2876.Google Scholar
  9. 9.
    Brownlie, A., Zon, L., The zebrafish as a modol system for the study of hematopoiesis, zebrafish mutants point the way to novel genes involved in the generation of vertebrate blood cells, Bioscience, 1999, 49(5): 382.CrossRefGoogle Scholar
  10. 10.
    Zhang, Q.Y., Li, Z. Q., Jiang, Y. L. et al., Discovery of virus pathogen from soft-shelled turtleTrionyx sinesis, Chinese Science Bulletin, 1997, 42(6): 503.CrossRefGoogle Scholar
  11. 11.
    Zhang, Q. Y., Li, Z. Q., Gui, J. F., Studies on morphogenesis and cellular interactions ofRana grylio virus in an infected fish cell line, Aquaculture, 1999, 175: 185.CrossRefGoogle Scholar
  12. 12.
    Zhang, Q. Y., Li, Z.Q., Three different viruses observed from the tissues of diseased mandarin fishSiniperca chuatsi, Chinese Science Bulletin, 1999, 44(5): 437.CrossRefGoogle Scholar
  13. 13.
    Zhang, Q. Y., Li, Z. Q., Susceptibility of fish cell lines toTrionyx sinesis virus, Chinese Journal of Veterinary Science, 2000, 20(1): 15.Google Scholar
  14. 14.
    Zhang, Q. Y., Li, Z. Q., Gui, J. F., Isolation of a lethal rhabdovirus from the cultured Chinese suckerMyxocyprinus asiaticus, Diseases of Aquatic Organisms, 2000, 42(1): 1.CrossRefGoogle Scholar
  15. 15.
    Fan, L. C., Gui, J. F., Ding, J. et al., Cytological mechanism on the integration of heterologous genome or chromosomes in the unique gynogeneticCarassius auratus gibelio, Developmental & Reproductive Biology, 1997, 6: 33.Google Scholar
  16. 16.
    Meng, Q. W., Su, J. X., Li, W. D., Comparative Anatomy of Fishes, Beijing: Science Press, 1987, 222.Google Scholar
  17. 17.
    Guo, X. X., He, F. C., Study and application of embryonic stem cells, Chinese Science Bulletin, 2000, 45(5): 467.Google Scholar
  18. 18.
    Nakano, T.,In vitro development of hematopoietic system from mouse embryonic stem cells: a new approach for embryonic hematopoiesis, International Journal of Hematology, 1996, 65: 1.CrossRefGoogle Scholar
  19. 19.
    Keller, G., Wall, C. A., Andrew, Z. C. F. et al., Overexpression of HOXII leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential, Blood, 1998, 92(3): 877.Google Scholar
  20. 20.
    Hirashima, M., Kataoka, H., Nishikawa, S. et al., Maturation of embryonic stem cells in endothelial cells in anin vitro model of vasculogenesis, Blood, 1999, 93: 1253.Google Scholar
  21. 21.
    Phillips, R. L., Ernst, R. E., Brunk, B. et al., The genetic program of hematopoietic stem cells, Sicence, 2000, 288: 1635.Google Scholar
  22. 22.
    Xie, J., Zhu, Y., Zhang, F., Differential gene expression of protein kinases in oocytes between natural gynogenetic silver crucian carp and amphimitic crucian carp, Chinese Science Bulletin, 1999, 44(14): 1297.CrossRefGoogle Scholar
  23. 23.
    Fan, L. C., Yang, S. T., Gui, J. F., Differential screening and characterization analysis of the egg envelope glycoprotein ZP3 cDNAs between gynogenetic and gonochoristic crucian carp, Cell Research, 2000, 11(1): 17.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiololgyChinese Academy of SciencesWuhanChina

Personalised recommendations