Advertisement

Chinese Science Bulletin

, Volume 46, Issue 18, pp 1497–1502 | Cite as

Advancement and prospect of short-term numerical climate prediction

  • Jifan Chou
  • Ming Xu
Review

Abstract

The defects of present methods of short-term numerical climate prediction are discussed in this paper, and four challenging problems are put forward. Considering our under developed computer conditions, we should innovate in the approcuch of numerical climate prediction on the basis of our own achievements and experiences in the field of short-term numerical climate prediction. It is possibly an effective way to settle the present defects of short-term numerical climate prediction.

Keywords

short-term climate numerical prediction defects innovation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charney, J. G., Fjortoft, R., Von Neumann, Numerical integration of the barotropic vorticity equation, Tellus, 1950, 2: 237.Google Scholar
  2. 2.
    Phillips, N. A., The general circulation of the atmosphere: a numerical experiment, Quart. J. Roy. Meteor. Soc., 1956, 82: 123.CrossRefGoogle Scholar
  3. 3.
    Wang Shaowu. Present situation and history of the research on short-term climate prediction, Cimate Prediction Studies (in Chinese), Beijing: China Meteorological Press, 1996, 1–17.Google Scholar
  4. 4.
    Wang Shaowu, Zhu Jinhong. Evaluation of short-term climate prediction, Quart J Appli Meteor (in Chinese), 2000, 11: 1.Google Scholar
  5. 5.
    Zuo Ruiting, Zhang Ming, The discuss on some problems of intra-monthly climate prediction, J. PLA Uni. Sci Tech. (in Chinese), 2000, 1(3): 76.Google Scholar
  6. 6.
    Carson, D. J., Seasonal forecasting, Quart. J. Roy. Meteor. Soc., 1998, 124A: 1.CrossRefGoogle Scholar
  7. 7.
    Carson, D. J., Climate modelling: Achievement and prospect, Quart J. Roy. Meteor. Soc., 1999, 125 A: 1.CrossRefGoogle Scholar
  8. 8.
    Gates, W. L., Boyle, J. S., Covey, C. et al., An overview of the results of the atmospheric model intercomparison project (AMIP1), Bull.A.M.S., 1999, 80: 29.CrossRefGoogle Scholar
  9. 9.
    Aderson, J., van Dool, H., Barston, A. et al., Present-day capabilities of numerical and statistical models for atmospheric extratropical seasonal simulation and prediction, Bull. A.M.S, 1999, 80: 1349.CrossRefGoogle Scholar
  10. 10.
    Brankovic, C., Palmer, T. N., Seasonal skill and predictability of ECMWF PROVOST ensembles, Quart. J. Roy. Meteor. Soc., 2000, 126B: 2035.CrossRefGoogle Scholar
  11. 11.
    Grahm, R. J., Evans, A. D. L., Mylne, K. R. et al., An assessment of seasonal predictability using atmospheric general circulation models, Quart. J. Roy. Meteor. Soc., 2000, 126B: 2211.CrossRefGoogle Scholar
  12. 12.
    Huang Ronghui, Research Progresses of characteristc, mechanism and prediction of climate disasters in China, Bull. CAS (in Chinese), 1999, 3: 188.Google Scholar
  13. 13.
    Zeng Qingcun, The research of climate system model, numerical climate simulation and climate prediction theory, Bull. CAS (in Chinese), 1999, 1: 51.Google Scholar
  14. 14.
    Zeng Qingcun, Yuan Chongguang, Wang Wanqiu et al., Numerical experiment of extraseasonal anomaly climate prediction, Chinese J.A.S. (in Chinese), 1990, 14(1): 10.Google Scholar
  15. 15.
    Yuan Chongguang, Li Xu, Zeng Qingcun, Summary of numerical extraseasonal anomaly climate prediction, Climatic and Environmental Research (in Chinese), 1996, 1(2): 150.Google Scholar
  16. 16.
    Zeng Qingcun, Liang Xinzhong, Zhang Minghua, The numerical simulation of monsoon and seasonal abrupt change of atmospheric general circulation, Chinese J.A.S. (in Chinese), 1988(Special Issue): 22.Google Scholar
  17. 17.
    Yuan Chongguang. The numerical simulation of summer monsoon and its precipitation, Chinese J.A.S.(in Chinese), 1990, 14(1): 46.Google Scholar
  18. 18.
    Zeng Qingcun, Yuan Chongguang, Zhang Xuehong et al., A global gridpoint general circulation model, Collection Papers Presented at WMO/IUGG NWP Symposium, Tokyo (August 4–8, 1986), 1986, 421–430.Google Scholar
  19. 19.
    Zeng Qingcun, Zhang Xuehong, Liang Xinzhong et al., Documentation of IAP Two-Level Atmospheric General Circulation Model, DOE/ER/60314-H1, Prepared for United States Department of Energy, 1989, 383.Google Scholar
  20. 20.
    Zeng Qingcun, Zhang Xuehong, Liang Xinzhong et al., IAP GCM and its application to the climate studies, The Third International Summer Colloquium on Climate Change Dynamics and Modelling, August 14–20, 1990, Beijing: China Meteorological Press, 303–330.Google Scholar
  21. 21.
    Zeng Qingcun, Yuan Chongguang, Li Xu et al., Seasonal and extraseasonal predictions of summer monsoon precipitation by GCMs, Adv. Atmos. Sci., 1997, 14(2): 163.CrossRefGoogle Scholar
  22. 22.
    Lin Zhaohui, Zeng Qingcun, Similation of East Asian summer monsoon by using an improved AGCM, Adv. Atmos. Sci., 1997, 14: 513.CrossRefGoogle Scholar
  23. 23.
    Zeng Qingcun, Experiments of Seasonal and extraseasonal prediction of summer monsoon precipitation, Preceedings of the International Conference on Monsoon Variatility and Prediction, Trieste, Italy, 9–13 May, 1994, 2: 452.Google Scholar
  24. 24.
    Molteni, F., Buizza, R., Palmer, T. N., The ECMWF ensemble prediction system, Quart. J. Roy. Meteor. Soc., 1996, 122: 73.CrossRefGoogle Scholar
  25. 25.
    Kalnay, E., Lord, S. J., McPherson, R. D., Maturity of operational numerical weather prediction: medium range, Bull. A.M.S., 1998, 79: 2753.CrossRefGoogle Scholar
  26. 26.
    Miyakoda, K., Cumulative results of testing a meteorological mathematical model —The description of the model, Proc. Roy. Irish. Acad., 1973, 73A: 99.Google Scholar
  27. 27.
    Leith, C. E., Theoretical skill of Monte Carlo forecasts, Mon. Wea. Rev., 1974, 102: 409.CrossRefGoogle Scholar
  28. 28.
    Hoffman, R. N., Kalnay, E., Lagged average forcasting, an alternative to Monte Carlo forecasting, Tellus, 1983, 35: 100.Google Scholar
  29. 29.
    Toth, Z., Kalnay, E., Ensemble forecasting at NMC: the generation of perturbations, Bull. A. M. S., 1993, 74: 2317.CrossRefGoogle Scholar
  30. 30.
    Palmer, T. N., Brankovic, C., Molteni, F. et al., Extended range predictions with ECMWF models: interannual variability in operational model integration, Quart. J. Roy. Meteor. Soc., 1990, 116: 799CrossRefGoogle Scholar
  31. 31.
    Palmer, T.N., Gelaro, R., Barkmeijer, J., Singular vectors, metric and adaptive observations, J.A.S., 1998, 55(4): 633.Google Scholar
  32. 32.
    Harrison, M. S. J., Palmer, T. N., Richardson, D. S. et al., Analysis and model dependencies in medium-range ensembles: Two transplant case-studies, Quart. J. Roy. Meteor. Soc., 1999, 125: 2487.CrossRefGoogle Scholar
  33. 33.
    Tilbadi, S., Palmer, T. N., Brankovic, C. et al., Extended range predictions with ECMWF models: influence of horizontal resolution on systematic error and forecast skill, Quart. J. Roy. Meteor. Soc., 1990, 116: 835.CrossRefGoogle Scholar
  34. 34.
    Fracton, M. S., Mo, K., Chen, W. et al., Dynamical extended range forecasting at the National Meteorological Center, Mon. Wea. Rev., 1989, 117: 1604.CrossRefGoogle Scholar
  35. 35.
    Lorenz, E. N., Atmospheric predictability as revealed by naturally occurring analogues, J.A.S., 1969, 26: 636.Google Scholar
  36. 36.
    Lorenz, E. N., Deterministic nonperiodic flow, J.A.S., 1963, 20: 130.Google Scholar
  37. 37.
    Lorenz, E. N., Atmospheric predictability experiments with a large numerical model, Tellus, 1982, 34: 505.CrossRefGoogle Scholar
  38. 38.
    Chou Jifan, Predictability of the atmosphere, Adv. Atmos. Sci., 1989, 6(3): 335.CrossRefGoogle Scholar
  39. 39.
    Petersen, A. C., Philosophy of climate science, Bull. A.M.S., 2000, 81: 265.CrossRefGoogle Scholar
  40. 40.
    Meehl, G. A., Zwiers, F., Evans, J.et al., Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change, Bull. A.M.S., 2000, 81: 427.CrossRefGoogle Scholar
  41. 41.
    Buizza, R., Petroliagis, P., Palmer, T. N. et al., Impact of model resolution and ensemble size on the performance of an ensemble prediction system, Quart. J. Roy. Meteor. Soc., 1998, 124B: 1935.CrossRefGoogle Scholar
  42. 42.
    Martin, G. M., The simulation of the Asian summer monsoon, and its sensitivity to horizontal resolution, in the UK Meteorological, Office Unified Model, Quart. J. Roy. Meteor. Soc., 1999, 125A: 1499.CrossRefGoogle Scholar
  43. 43.
    Sperber, K. R., Hameed, S., Potter, G. L. et al., Simulation of the northern summer monsoon in the ECMWF model: sensitivity to horizontal resolution, Mon. Weather. Rev., 1994, 122: 2461.CrossRefGoogle Scholar
  44. 44.
    Stephenson, D. B., Chauvin, F., Royer, J. F., Simulation of the Asian summer monsoon and its dependence on model horizontal resolution, J. Met. Soc. Jpn., 1998, 76: 237.Google Scholar
  45. 45.
    Baumhefner, D. P., Numerical extended-range prediction: Forecast skill using a low-resolution climate model, Mon. Wea. Rev., 1996, 124: 1965.CrossRefGoogle Scholar
  46. 46.
    Li Jianping, Zeng Qingcun, Chou Jifan, Computational uncertainty principle in nonlinear ordinary differential equation (I)—Numerical results, Science in China, Series E, 2000, 43(5): 449.CrossRefGoogle Scholar
  47. 47.
    Li Jianping, Zeng Qingcun, Chou Jifan, Computational uncertainty principle in nonlinear ordinary differential equation (II)— Theoritical analysis, Science in China, Series E, 2001, 44(1): 56.Google Scholar
  48. 48.
    Feng Kang, Symplectic algorithms for Hamiltonian systems, Collected Works of Feng Kang (II), Beijing: China National Defence Industrial Press, 1995, 327–352.Google Scholar
  49. 49.
    Chou Jifan, Some properties of operators and the decay of effect of initial condition, Acta Meteorologicia Sinica (in Chinese) 1983, 41(4): 385.Google Scholar
  50. 50.
    Li Jianping, Chou Jifan, The property of solutions for the equations of large-scale atmosphere with non-stationary external forcing, Chinese Science Bulletin (in Chinese), 1995, 40: 1207.Google Scholar
  51. 51.
    Li Jianping, Chou Jifan, Existence of atmosphere attractor, Science in China, Series D, 1997, 27(1): 89.Google Scholar
  52. 52.
    Wang Shouhong, Huang Jianping, Chou Jifan, Some properties of solutions for the equations of large-scale atmosphere, nonlinear adjustment to the time-independent external forcing, Science in China, Series B, 1989, 19(3): 328.Google Scholar
  53. 53.
    Chou Jifan, Gao Jidong. Long-range Numerical Weather Prediction (revised ed.) (in Chinese), Beijing: China Meteorological Press, 1995, 69–81.Google Scholar
  54. 54.
    Chou Jifan, Some general properties of the atmospheric model in H space, R space, point mapping, cell mapping, Proceedings of International Summer Colloquium on Nonlinear Dynamics of Atmosphere, 10–20 Aug., 1986, Beijing: Science Press, 1987, 187–189.Google Scholar
  55. 55.
    Chou Jifan, Xie Zhihui, Nonlinear Dynamics and Climate Modelling, Climate Variability, Beijing: China Meteorological Press, 1993, 215–221Google Scholar
  56. 56.
    Xie Zhihui, Chou Jifan, Progress in the global analysis to the atmospheric dynamical equations, Advance in Earth Sciences(in Chinese), 1999, 14(2): 133.Google Scholar
  57. 57.
    Li Jianping, Chou Jifan, The qualitative theory on the dynamical equations of atmospheric motion and its application, Chinese J.A.S. (in Chinese), 1998, 22: 443.Google Scholar
  58. 58.
    Guo Bingrong, Shi Jiuen, Chou Jifan, Long-range numerical weather forecast with underlaying surface’s thermal situation expressed by continuos evolution of atmospheric temperature and pressure field, Journal of Lanzhou University (in Chinese), 1977(4): 73.Google Scholar
  59. 59.
    Qiu Chongjian, Chou Jifan, A new approach to improve the numerical weather prediction, Science in China, Series B, 1987, 17(8): 903.Google Scholar
  60. 60.
    Qiu Chongjian, Chou Jifan, The method of optimizing parameterization in numerical prediction model, Science in China, Series B, 1990, 20(2): 218.Google Scholar
  61. 61.
    Qiu Chongjian, Chou Jifan, A perturbation method of model recognition of numerical weather prediction, Chinese J.A.S. (in Chinese), 1988, 12(3): 225.Google Scholar
  62. 62.
    Gu Zhenchao, The equivalence of the weather situation forecast as an initial-value problem and the weather forecast using surface weather evolution, Acta Meteorologicia Sinica (in Chinese), 1958, 29(2): 93.Google Scholar
  63. 63.
    Gu Zhenchao, The use of past data in numerical weather forecast, Acta Meteorologicia Sinica (in Chinese), 1958, 29(3): 176.Google Scholar
  64. 64.
    Chou Jifan. A problem of using past data in numerical weather forecasting, Scientia Sinica (Science in China), 1974, 17(6): 814.Google Scholar
  65. 65.
    Chou Jifan, Multi-time numerical model for medium-range forecasting of cold wave, Collected Works of Medium Range Forecasting of Cold Wave(in Chinese), Beijing: Beijing University Press, 1984, 142–151.Google Scholar
  66. 66.
    Cao Hongxing. Self-memorization equation in atmospheric motion, Science in China, Series B, 1993, 23(1): 104.Google Scholar
  67. 67.
    Cao Hongxing, Atmospheric self-memorial spectral model and its application, Chinese J.A.S. (in Chinese), 1998, 22(1): 119.Google Scholar
  68. 68.
    Gu Xiangqian, A spectral model based on atmospheric self-memorization principle, Chinese Science Bulletin (in Chinese), 1998, 43(9): 1.Google Scholar
  69. 69.
    Qiu Chongjian, Chou Jifan, An analogue-dynamical method of weather forecasting, Chinese J.A.S. (in Chinese), 1989, 13(1): 22.Google Scholar
  70. 70.
    Huang, J. P., Yi, Y., Wang, S. et al., An analogue-dynamical long range numerical weather prediction system incorporating historical evolution, Quart, J. Roy. Meteor. Soc., 1993, 116: 547.Google Scholar
  71. 71.
    Zhang Banglin, Chou Jifan, Applications of EOFs to numerical climatic simulation, Science in China, Series B, 1991, 21(4): 442.Google Scholar
  72. 72.
    Zhang Peiqun, Chou Jifan, A method improving monthly extended range forecasting, Plateau Meteorology (in Chinese), 1997, 16(4): 376.Google Scholar
  73. 73.
    Gong Jiandong, Li Weijing, Chou Jifan, Forming proper ensemble forecast initial members with four dimensional variational data assimilation method, Chinese Science Bulletin (in Chinese), 1999, 44(10): 1113.Google Scholar
  74. 74.
    Gong Jiandong, Chou Jifan. The theories and methods of utilizing historical data in numerical weather forecast, Plateau Meteorology (in Chinese), 1999, 18(3): 392.Google Scholar
  75. 75.
    Lin Zhaohui, Zhao Yan, Zhou Guangqing et al., Prediction of summer climate anomaly over China for 1999 and its verification, Climatic and Environmental Research (in Chinese), 2000, 5(2): 97.Google Scholar
  76. 76.
    Lin Zhaohui, Li Xu, Zhao Yan, An improved short-term climate prediction system and its application to the extraseasonal prediction of rainfall anomaly in China for 1998, Climatic and Environmental Research (in Chinese), 1998, 3(4): 339.Google Scholar
  77. 77.
    Huang Ronghui, Sun Fengying, The influences of the convective activities over tropical western Pacific Warm Pool on the intraseasonal variation of east Asian summer monsoon, Chinese J.A.S. (in Chinese), 1994, 18(4): 456.Google Scholar
  78. 78.
    Huang Ronghui, Sun Fengying. Impacts of the tropical western Pacific on the East Asian summer monsoon, J. Meteor. Soc. Japan, 1992, 70B: 243Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Jifan Chou
    • 1
    • 2
  • Ming Xu
    • 1
  1. 1.Department of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.Training Center of Chinese Meteorological AdministrationBeijingChina

Personalised recommendations