A new type numerical model for action balance equation in simulating nearshore waves

  • Yixin Yan
  • Fumin Xu
  • Lihua Mao


Several current used wave numerical models are briefly described, the computing techniques of the source terms, numerical wave generation and boundary conditions in the action balance equation model are discussed. Not only the quadruplet wave-wave interactions, but also the triad wave-wave interactions are included in the model, so that nearshore waves could be simulated reasonably. The model is compared with the Boussinesq equation and the mild slope equation. The model is applied to calculating the distributions of wave height and wave period field in the Haian Bay area and to simulating the influences of the unsteady current and water level variation on the wave field. Finally, the developing tendency of the model is discussed.


action balance equation numerical generating waves quadruplet wave-wave interactions triad wave-wave interactions Boussinesq equation mild slope equation 


  1. 1.
    Peregrine, D. H., Long wave on a beach., J. fluid Mech., 1967, 27: 815.CrossRefGoogle Scholar
  2. 2.
    Abbott, M. B., McCowan, A. D., Warren, I. R., Accuracy of short wave numerical models, J. Hydraul. Eng., 1884, 110(10): 1287.CrossRefGoogle Scholar
  3. 3.
    Madsen, P. A., Murray, R., Sorensen, O. R., A new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal Eng., 1991, 15(4): 1.CrossRefGoogle Scholar
  4. 4.
    Nowgu, O., An alternative form of Boussinesq equations for nearshore wave propagation, J. of Waterway, Port, Coastal and Ocean Engineering, 1993, 119(6): 618.CrossRefGoogle Scholar
  5. 5.
    Beji, S., Nadaoka, K., A form derivation and numerical modeling of the improved Boussinesq equations for varying depth, Ocean. Eng., 1996, 23(8): 691.CrossRefGoogle Scholar
  6. 6.
    Zhang Yonggang, Li Yucheng, Teng Bin, A New Nonstationary Irregular Waves Mild Slope Equation Model, China Ocean Engineering (in Chinese), 1996, 14 (4): 30.Google Scholar
  7. 7.
    Berkoff, J. C. W., Computation of combined refraction-diffraction, Proc. Of the 13thConfon. Coastal Eng., 1972, 1: 471.Google Scholar
  8. 8.
    Raddar, A. C., On the parabolic equation method for water-Wave propagation, J. fluid Mech, 1979(1): 159Google Scholar
  9. 9.
    Kirby, J. T., A general wave equation for waves over rippled beds, J. fluid Mech., 1986, 162: 171.CrossRefGoogle Scholar
  10. 10.
    Dalrymple, R. A., Kirby, J. T., Model for very wide angle water waves and wave diffraction, J. Fluid Mech., 1988, 192: 33.CrossRefGoogle Scholar
  11. 11.
    WAMDI Group, The WAM model -A third generation ocean wave prediction model, J. Phys. Oceanogr, 1988, 18(12): 1775.CrossRefGoogle Scholar
  12. 12.
    Tolman, H. L., A third generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents, J. Phys. Oceanogr, 1991, 21(6): 782.CrossRefGoogle Scholar
  13. 13.
    Research report of ocean wave numerical forecast (in Chinese), The Key Science and Technological Project During the 7th 5-year-plan Period in China (75-76-01-01), Ocean University of Qingdao, 1995.Google Scholar
  14. 14.
    Ris, R. C., Holthuijsen, L. H., Booij, N., A spectral model for waves in the near shore zone, Coastal Engineering, 1994, 1: 68.Google Scholar
  15. 15.
    Booij, N., Holthuijsen, L. H., Ris, R. C., The “SWAN” wave model for shallow water, Coastal Engineering, 1996, 1: 668.Google Scholar
  16. 16.
    Cavaleri, L., Malanotte-Rizzoli, P., Wind wave prediction in shallow water: Theory and aplications, J. Geophys. Res, 1981, 86 (C11): 10961.CrossRefGoogle Scholar
  17. 17.
    Komen, G. J., Hasselmann, S., Hasselmann, K., On the existence of a fully developed wind sea spectrum, J. Phys. Oceanogr., 1984, 14: 1271.CrossRefGoogle Scholar
  18. 18.
    Collins, J. I., Prediction of shallow water spectra, J. Geophys. Res., 1972, 77(15): 2693.CrossRefGoogle Scholar
  19. 19.
    Madsen, O. S., Poon, Y. K. Graber, H. C., Spectral wave attenuation by bottom friction: Theory, Proc. 21th Int. conf., Coastal Engineering, ASCE, 1988,492.Google Scholar
  20. 20.
    Battjes, J. A., Stive, M. J. F., Calibration and verification of a dissipation model for random breaking waves, J. Geophys. Res., 1985, 90 (C5): 9159.CrossRefGoogle Scholar
  21. 21.
    Nelson, R. C., Design wave heights on very mild slopes: An experimental study, Civil Eng. Trans., Inst. Eng. Aust., 1987, 29: 157.Google Scholar
  22. 22.
    Hasselmann, S., Hasselmann, K., Allender, J. H. et al., Computations and parameterizations of the linear energy transfer in a gravity wave spectrum, J. Phys. Oceanogr., 1985, 15: 1378.CrossRefGoogle Scholar
  23. 23.
    Abrea, M., Larraza, A., Thornton, E., Nonlinear transformation of directional wave spectra in shallow water, J. Geophys. Res, 1992, 97: 15579.CrossRefGoogle Scholar
  24. 24.
    Eldeberky, Y., Battjes, J. A., Parameterization of triad interactions in wave energy models, Proc. Coastal Dynamics Conf. 95, Gdansk, Poland, 140–148.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Yixin Yan
    • 1
  • Fumin Xu
    • 1
  • Lihua Mao
    • 1
  1. 1.Research Institute of Coastal & Ocean EngineeringHohai UniversityNanjingChina

Personalised recommendations