Use of viral replicons for the expression of genes in plants

  • Claudine Porta
  • George P. Lomonossoff


Autonomously replicating virus-based vectors have been investigated as a means of introducing heterologous genes into plants. This approach has a number of potential advantages over stable genetic transformation, particularly in terms of speed and levels of expression that can be obtained. Several groups of plant viruses, with genomes consisting of both DNA and RNA, have been investigated as possible gene vectors. In the case of DNA viruses, it has generally been possible to identify nonessential regions of the genome that can be replaced by foreign sequences. However, there appear to be limitations on the size of insert which can be tolerated. In the case of RNA viruses, replacement of viral sequences usually has a drastic effect on the viability. However, in several cases it has proved possible to substantially increase the size of the viral genome by the direct insertion of additional sequences while still retaining the ability of the viruses to multiply and spread in plants. These RNA virus-based systems appear to have the greatest potential as gene vectors.

Index Entries

Plant virus vector gene transfer chimeric particles protein engineering 


  1. 1.
    Christou, P. (1994) Genetic engineering of crop legumes and cereals: current status and recent advances.AGRO food INDUSTRY hi-tech 5, 17–27.Google Scholar
  2. 2.
    Draper, J. and Scott, R. (1991) Gene transfer to plants, inPlant Genetic Engineering (Grierson, D., ed.), Blackie, Glasgow, London, pp. 38–81.Google Scholar
  3. 3.
    Flavell, R. B. (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication.Proc. Natl. Acad. Sci. USA 91, 3490–3496.PubMedCrossRefGoogle Scholar
  4. 4.
    Finegan, J. and McElroy, D. (1994) Transgene inactivation: plants fight back!Biotechnology 12, 883–888.CrossRefGoogle Scholar
  5. 5.
    Howell, S. H., Walker, L. L., and Dudley, R. K. (1980) Cloned cauliflower mosaic virus DNA infects turnips (Brassica rapa).Science 208, 1265–1267.PubMedCrossRefGoogle Scholar
  6. 6.
    Lebeurier, G., Hirth, L., Hohn, B., and Hohn, T. (1982)In vivo recombination of cauliflower mosaic virus DNA.Proc. Natl. Acad. Sci. USA 79, 2932–2936.PubMedCrossRefGoogle Scholar
  7. 7.
    Maule, A. J. (1985) Replication of caulimoviruses in plants and protoplasts, inMolecular Plant Virology, vol. 2 (Davies, J. W., ed.), CRC, Boca Raton, FL, pp. 161–190.Google Scholar
  8. 8.
    Sieg, K. and Gronenborn, B. (1982) Introduction and propagation of foreign DNA in plants using cauliflower mosaic virus as a vector, inNATO Adv. Study Course: Structure and Function of Plant Genomes, p. 154.Google Scholar
  9. 9.
    Dixon, L. K. and Hohn, T. (1984) Initiation of translation of the cauliflower mosaic virus genome from a polycistronic mRNA: evidence from deletion mutagenesis.EMBO J. 3, 2731–2736.PubMedGoogle Scholar
  10. 10.
    Gronenborn, B., Gardner, R. C., Schaefer, S., and Shepherd, R. J. (1981) Propagation of foreign DNA in plants using cauliflower mosaic virus as vector.Nature 294, 773–776.CrossRefGoogle Scholar
  11. 11.
    Dixon, L. K., Koenig, I., and Hohn, T. (1983) Mutagenesis of cauliflower mosaic virus.Gene 25, 189–199.PubMedCrossRefGoogle Scholar
  12. 12.
    Daubert, S., Shepherd, R. J., and Gardner, R. C. (1983) Insertional mutagenesis of the cauliflower mosaic virus genome.Gene 25, 201–208.PubMedCrossRefGoogle Scholar
  13. 13.
    Howarth, A. J., Gardner, A. C., Messing, J., and Shepherd, R. J. (1981) Nucleotide sequence of naturally occurring deletion mutants of cauliflower mosaic virus.Virology 112, 678–685.CrossRefPubMedGoogle Scholar
  14. 14.
    Brisson, N., Paszkowski, J., Penswick, J. R., Gronenborn, B., Potrykus, I., and Hohn, T. (1984) Expression of a bacterial gene in plants.Nature 310, 511–514.CrossRefGoogle Scholar
  15. 15.
    Pattishall, K. H., Acar, J., Burchall, J. J., Goldstein, F. W., and Harvey, R. J. (1977) Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups.J. Biol. Chem. 252, 2319–2323.PubMedGoogle Scholar
  16. 16.
    Lefebvre, D. D., Miki, B. L., and Laliberte, J. F. (1987) Mammalian metallothionein functions in plants.Biotechnology 5, 1053–1056.CrossRefGoogle Scholar
  17. 17.
    De Zoeten, G. A., Penswick, J. R., Horisberger, M. A., Ahl, P., Schultze, M., and Hohn, T. (1989) The expression, localization, and effect of a human interferon in plants.Virology 172, 213–222.PubMedCrossRefGoogle Scholar
  18. 18.
    Futterer, J., Bonneville, J. M., and Hohn, T. (1990) Cauliflower mosaic virus as a gene expression vector for plants.Physiologia Plantarum 79, 154–157.CrossRefGoogle Scholar
  19. 19.
    Hirochika, H. and Hayashi, K. (1991) A new strategy to improve a cauliflower mosaic virus vector.Gene 105, 239–241.PubMedCrossRefGoogle Scholar
  20. 20.
    Townsend, R., Stanley, J., Curson, S. J., and Short, M. N. (1985) Major polyadenylated transcripts of cassava latent virus and location of the gene encoding coat protein.EMBO J. 4, 33–37.PubMedGoogle Scholar
  21. 21.
    Morris-Krsinich, B. A. M., Mullineaux, P. M., Donson, J., Boulton, M. I., Markham, P. G., Short, M. N., and Davies, J. W. (1985) Bidirectional transcription of maize streak virus DNA and identification of the coat protein gene.Nucleic Acids Res. 20, 7237–7256.CrossRefGoogle Scholar
  22. 22.
    Sunter, G., Gardiner, W. E., and Bisaro, D. M. (1989) Identification of tomato golden mosaic virus-specific RNAs in infected plants.Virology 170, 243–250.PubMedCrossRefGoogle Scholar
  23. 23.
    Dekker, E. L., Woolston, C. J., Xue, Y., Cox, B., and Mullineaux, P. M. (1991) Transcript mapping reveals different expression strategies for the bicistronic RNAs of the geminivirus wheat dwarf virus.Nucleic Acids Res. 19, 4075–4081.PubMedCrossRefGoogle Scholar
  24. 24.
    Grimsley, N., Hohn, T., Davies, J. W., and Hohn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants.Nature 325, 177–179.CrossRefGoogle Scholar
  25. 25.
    Stanley, J. and Townsend, R. (1986) Infectious mutants of cassava latent virus generatedin vivo from intact recombinant DNA clones containing single copies of the genome.Nucleic Acids Res. 14, 5981–5998.PubMedCrossRefGoogle Scholar
  26. 26.
    Gardiner, W., Sunter, G., Brand, L., Elmer, J. S., Rogers, S. G., and Bisaro, D. M. (1988) Genetic analysis of tomato golden mosaic virus; the coat protein is not required for systemic spread or symptom development.EMBO J. 7, 899–904.PubMedGoogle Scholar
  27. 27.
    Ward, A., Etessami, P., and Stanley, J. (1988) Expression of a bacterial gene in plants mediated by infectious geminivirus DNA.EMBO J. 7, 1583–1587.PubMedGoogle Scholar
  28. 28.
    Hayes, R. J., Petty, I. T. D., Coutts, R. H. A., and Buck, K. W. (1988) Gene amplification and expression in plants by a replicating geminivirus.Nature 334, 179–182.CrossRefGoogle Scholar
  29. 29.
    Hayes, R. J., Coutts, R. H. A., and Buck, K. W. (1989) Stability and expression of bacterial genes in replicating geminivirus vectors in plants.Nucleic Acids Res. 17, 2391–2403.PubMedCrossRefGoogle Scholar
  30. 30.
    Elmer, S. and Rogers, S. G. (1990) Selection for wild type size derivatives of tomato golden mosaic virus during systemic infection.Nucleic Acids Res. 18, 2001–2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Lazarowitz, S. G., Pinder, A. J., Damsteegt, V. D., and Rogers, S. G. (1989) Maize streak virus genes essential for systemic spread and symptom development.EMBO J. 8, 1023–1032.PubMedGoogle Scholar
  32. 32.
    Woolston, C. J., Reynolds, H., Stacey, N. J., and Mullineaux, P. M. (1989) Replication of wheat dwarf virus DNA in protoplasts and analysis of coat protein mutants in protoplasts and plants.Nucleic Acids Res. 17, 6029–6041.PubMedCrossRefGoogle Scholar
  33. 33.
    Mullineaux, P. M., Boulton, M. I., Bowyer, P., Van der Vlugt, R., Marks, M., Donson, J., and Davies, J. W. (1988) Detection of a non-structural protein of MR 11,000 encoded by the virion DNA of maize streak virus.Plant Mol. Biol. 11, 57–66.CrossRefGoogle Scholar
  34. 34.
    Boulton, M. I., Steinkellner, H., Donson, J., Markham, P. G., King, D. I., and Davies, J. W. (1989) Mutational analysis of the virion-sense genes of maize streak virus.J. Gen. Virol. 70, 2309–2323.PubMedGoogle Scholar
  35. 35.
    Shen, W.-H. and Hohn, B. (1994). Amplification and expression of the β-glucuronidase gene in maize plants by vectors based on maize streak virus.Plant J. 5, 227–236.CrossRefGoogle Scholar
  36. 36.
    Shen, W.-H. and Hohn, B. (1995). Vectors based on maize streak virus can replicate to high copy numbers in maize plants.J. Gen. Virol. 76, 965–969.PubMedGoogle Scholar
  37. 37.
    Töpfer, R., Gronenborn, B., Schell, J., and Steinbiss, H. H. (1989) Uptake and transient expression of chimeric genes in seed-derived embryos.Plant Cell 1, 133–139.PubMedCrossRefGoogle Scholar
  38. 38.
    Matzeit, W., Schaefer, S., Kammann, M., Schalk, H. S., Schell, J., and Gronenborn, B. (1991) Wheat dwarf virus vectors replicate and express foreign genes in cells of monocotyledonous plants.Plant Cell 3, 247–258.PubMedCrossRefGoogle Scholar
  39. 39.
    Ugaki, M., Ueda, T., Timmermans, M. C. P., Vieira, J., Elliston, K. O., and Messing, J. (1991) Replication of a geminivirus derived shuttle vector in maize endosperm cells.Nucleic Acids Res. 19, 371–377.PubMedCrossRefGoogle Scholar
  40. 40.
    Timmermans, M. C. P., Das, O. P., and Messing, J. (1992) Trans replication and high copy numbers of wheat dwarf virus vectors in maize cells.Nucleic Acids Res. 20, 4047–4054.PubMedCrossRefGoogle Scholar
  41. 41.
    Ahlquist, P. and Janda, M. (1984) cDNA cloning and in vitro transcription of the complete brome mosaic virus genome.Mol. Cell. Biol. 4, 2876–2882.PubMedGoogle Scholar
  42. 42.
    Ahlquist, P., French, R., Janda, M., and Loesch-Fries, S. (1984) Multicomponent RNA plant virus infection derived from cloned viral cDNA.Proc. Natl. Acad. Sci. USA 81, 7066–7070.PubMedCrossRefGoogle Scholar
  43. 43.
    Mori, M., Mise, K., Kobayashi, K., Okuno, T., and Furusawa, I. (1991) Infectivity of plasmids containing brome mosaic virus cDNA linked to the cauliflower mosaic virus 35S promoter.J. Gen. Virol. 72, 243–246.PubMedGoogle Scholar
  44. 44.
    French, R., Janda, M., and Ahlquist, P. (1986) Bacterial gene inserted in an engineered RNA virus: efficient expression in monocotyledonous plant cells.Science 231, 1294–1297.PubMedCrossRefGoogle Scholar
  45. 45.
    Herrera-Estrella, L., Van den Broeck, G., Maenhaut, R., Van Montagu, M., and Schell, J. (1984) Light-inducible and chloroplast-associated expression of a chimaeric gene introduced intoNicotiana tabacum using a Ti plasmid vector.Nature 310, 115–120.PubMedCrossRefGoogle Scholar
  46. 46.
    Joshi, R. L., Joshi, V., and Ow, D. W. (1990) BSMV genome mediated expression of a foreign gene in dicot and monocot plant cells.EMBO J. 9, 2663–2669.PubMedGoogle Scholar
  47. 47.
    Dawson, W. O., Bubrick, P., and Grantham, G. L. (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology.Phytopathology 78, 783–789.CrossRefGoogle Scholar
  48. 48.
    Takamatsu, N., Ishikawa, M., Meshi, T., and Okada, Y. (1987) Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA.EMBO J. 6, 307–311.PubMedGoogle Scholar
  49. 49.
    Dawson, W. O., Lewandowski, D. J., Hilf, M. E., Bubrick, P., Raffo, A. J., Shaw, J. J., Grantham, G. L., and Desjardins, P. R. (1989) A tobacco mosaic virus-hybrid expresses and loses an added gene.Virology 172, 285–292.PubMedCrossRefGoogle Scholar
  50. 50.
    King, A. M. Q. (1988) Genetic recombination in positive strand RNA viruses, inRNA Genetics, vol 2 (Domingo, E., Holland, J., and Ahlquist, P. eds.), CRC, Boca Raton, FL, pp. 149–165.Google Scholar
  51. 51.
    Chapman, S., Kavanagh, T., and Baulcombe, D. (1992) Potato virus X as a vector for gene expression in plants.Plant J. 2, 549–557.PubMedGoogle Scholar
  52. 52.
    Hammond-Kosack, K. E., Staskawicz, B. J., Jones, J. D. G., and Baulcombe, D. C. (1995) Functional expression of a fungal avirulence gene from a modified potato virus X genome.MPMI 8, 181–185.Google Scholar
  53. 53.
    Donson, J., Kearney, C. M., Hilf, M. E., and Dawson, W. O. (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector.Proc. Natl. Acad. Sci. USA 88, 7204–7208.PubMedCrossRefGoogle Scholar
  54. 54.
    Kumagai, M. H., Turpen, T. H., Weinzettl, N., Della-Cioppa, G., Turpen, A. M., Donson, J., Hilf, M. E., Grantham, G. L., Dawson, W. O., Chow, T. P., Piatak, M., Jr., and Grill, L. K. (1993) Rapid, high-level expression of biologically active α-trichosanthin in transfected plants by an RNA viral vector.Proc. Natl. Acad. Sci. USA 90, 427–430.PubMedCrossRefGoogle Scholar
  55. 55.
    Shaw, P. C., Yung, M. H., Zhu, R. H., Ho, W. K. K., Ng, T. B., and Yeung, H. W. (1991) Cloning of trichosanthin cDNA and its expression inEscherichia coli.Gene 97, 267–272.PubMedCrossRefGoogle Scholar
  56. 56.
    Kumagai, M. H., Donson, J., Della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L. K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA.Proc. Natl. Acad. Sci. USA 92, 1679–1683.PubMedCrossRefGoogle Scholar
  57. 57.
    Gray, J., Picton, S., Shabbeer, J., Schuch, W., and Grierson, D. (1992) Molecular biology of fruit ripening and its manipulation with antisense genes.Plant Mol. Biol. 19, 69–87.PubMedCrossRefGoogle Scholar
  58. 58.
    van der Krol, A. R., Mur, L. A., and Beld, M. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression.Plant Cell 2, 291–299.PubMedCrossRefGoogle Scholar
  59. 59.
    Fray, R. G. and Grierson, D. (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression.Plant Mol. Biol. 22, 589–602.PubMedCrossRefGoogle Scholar
  60. 60.
    Lomonossoff, G. P. and Johnson, J. E. (1991) The synthesis and structure of comovirus capsids.Prog. Biophys. Molec. Biol. 55, 107–137.CrossRefGoogle Scholar
  61. 61.
    Usha, R., Rohll, J. B., Spall, V. E., Shanks, M., Maule, A. J., Johnson, J. E., and Lomonosoff, G. P. (1993) Expression of an animal virus antigenic site on the surface of a plant virus particle.Virology 197, 366–374.PubMedCrossRefGoogle Scholar
  62. 62.
    Porta, C., Spall, V. E., Loveland, J., Johnson, J. E., Barker, P. J., and Lomonosooff, G. P. (1994) Development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides.Virology 202, 949–955.PubMedCrossRefGoogle Scholar
  63. 63.
    McLain, L., Porta, C., Lomonossoff, G. P., Durrani, Z., and Dimmock, N. J. (1995) Human immunodeficiency virus type 1 neutralizing antibodies raised to a gp41 peptide expressed on the surface of a plant virus.Aids and Human Retroviruses 11, 327–334.CrossRefGoogle Scholar
  64. 64.
    Takamatsu, N., Watanabe, Y., Yanagi, H., Meshi, T., Shiba, T., and Okada, Y. (1990) Production of enkephalin in tobacco protoplasts using tobacco mosaic virus RNA vector.FEBS 269, 73–76.CrossRefGoogle Scholar
  65. 65.
    Skuzeski, J. M., Nichols, L. M., Gesteland, R. F., and Atkins, F. (1991) The signal for a leaky UAG codon in several plant viruses includes the two downstream codons.J. Mol. Biol. 218, 365–373.PubMedCrossRefGoogle Scholar
  66. 66.
    Hamamoto, H., Sugiyama, Y., Nakagawa, N., Hashida, E., Matsunaga, Y., Takemoto, S., Watanabe, Y., and Okada, Y. (1993) A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato.Biotechnology 11, 930–932.PubMedCrossRefGoogle Scholar
  67. 67.
    Turpen, T. H., Reinl, S. J., Charoenvit, Y., Hoffman, S. L., Fallarme, V., and Grill, L. K. (1995) Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus.Biotechnology 13, 53–57.PubMedCrossRefGoogle Scholar
  68. 68.
    Szeto, W. W., Hamer, D. H., Carlson, P. S., and Thomas, C. A. (1977). Cloning of cauliflower mosaic virus (CaMV) DNA in Escherichia coli.Science 196, 210–212.PubMedCrossRefGoogle Scholar
  69. 69.
    Hull, R. (1978) The possible use of plant viral DNAs in genetic manipulation in plants.Trends Biochem. Sci. 3, 254–256.CrossRefGoogle Scholar
  70. 70.
    van Vloten-Doting, L., Bol, J. F., and Cornelissen, B. (1985) Plant-virus-based vectors for gene transfer will be of limited use because of the high error frequency during viral RNA synthesis.Plant Mol. Biol. 4, 323–326.CrossRefGoogle Scholar
  71. 71.
    Rodríguez-Cerezo, E., Moya, A., and García-Arenal, F. (1989) Variability and evolution of the plant RNA virus pepper mild mottle virus.J. Virol. 63, 2198–2203.PubMedGoogle Scholar
  72. 72.
    Rodríguez-Cerezo, E. and García-Arenal, F. (1989) Genetic heterogeneity of the RNA genome population of the plant virus U5-TMV.Virology 170, 418–423.PubMedCrossRefGoogle Scholar
  73. 73.
    Kearney, C. M., Donson, J., Jones, G. E., and Dawson, W. O. (1993) Low level of genetic drift in foreign sequences replicating in a RNA virus in plants.Virology 192, 11–17.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Claudine Porta
    • 1
  • George P. Lomonossoff
    • 1
  1. 1.Department of Virus ResearchJohn Innes CentreNorwichUK

Personalised recommendations