Metallurgical and Materials Transactions B

, Volume 1, Issue 5, pp 1195–1203 | Cite as

The effect of natural convection on the shape and movement of the melt-solid interface in the controlled solidification of lead

  • J. Szekely
  • P. S. Chhabra
Process Metallurgy


Experiments are reported on the study of the effect of natural convection on the controlled solidification of lead under conditions of nearly unidirectional heat flow within the system. The experimentally found shape and position of the solid-melt interface was reasonably well predicted by the consideration of heat transfer by natural convection from the melt to the solid surface. Transient runs were also carried out and here the rate of movement of the melt-solid interface was readily predicted from the (numerical) solution of the appropriate unsteady state conduction equation.


Heat Transfer Coefficient Natural Convection Metallurgical Transaction Volume Solidification Front Cold Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Tiller:Trans. TMS-AIME, 1962, vol. 224, p. 448.Google Scholar
  2. 2.
    B. Chalmers:Principles of Solidification, John Wiley & Sons, New York, 1964.Google Scholar
  3. 3.
    R. W. Ruddle and A. L. Mincher:J. Inst. Metals, 1950–51, vol. 78, p. 229.Google Scholar
  4. 4.
    G. S. Cole and G. F. Boiling:Trans. Met. Soc. AIME, 1965, vol. 233, p. 1568.Google Scholar
  5. 5.
    D. R. Uhlmann, T. P. Seward, III, and B. Chalmers:Trans. TMS-AIME, 1966, vol. 236, p. 527.Google Scholar
  6. 6.
    H. P. Utech and M. C. Flemings:J. Appl. Phys., 1966, vol. 37, p. 29.CrossRefGoogle Scholar
  7. 7.
    G. S. Cole and W. C. Winegard:J. Inst. Metals, 1964–65, vol. 93, p. 153.Google Scholar
  8. 8.
    G. S. Cole and W. C. Winegard:Can. Met. Quart., 1962, vol. 1, p. 13.CrossRefGoogle Scholar
  9. 9.
    G. S. Cole:Trans. TMS-AIME, 1967, vol. 239, p. 1287.Google Scholar
  10. 10.
    S. Ostrach: NACA Report IV, 1953.Google Scholar
  11. 11.
    S. Levy and J. W. Mausteller: Liquid Metals Handbook, 1955, TID 5277 Atomic Energy Commission - Department of Navy, Washington, D.C.Google Scholar
  12. 12.
    Metals Handbook, 8th Edition, Vol. 1, American Society for Metals, Metals Park, Ohio, 1961Google Scholar
  13. 13.
    E. R. G. Eckert, and W. O. Carlson:International J. Heat Mass Trans., 1961, vol. 2, p. 106.CrossRefGoogle Scholar
  14. 14.
    A. Emery and N. C. Chu:J. Heat Trans., Trans. ASME, 1965, ser. C, vol. 87, pp. 110–16.CrossRefGoogle Scholar
  15. 15.
    P. S. Chhabra: M. S. Thesis, 1969, State University of New York at Buffalo.Google Scholar
  16. 16.
    D. Dropkin and E. Sommerscales: ASME Paper No. 64-HT-22, Dept. of Mechanical Engineering, Cornell University, Ithaca, N.Y.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970

Authors and Affiliations

  • J. Szekely
    • 1
  • P. S. Chhabra
    • 1
  1. 1.State University of New York at BuffaloBuffalo

Personalised recommendations