Advertisement

Archives of Pharmacal Research

, Volume 9, Issue 3, pp 131–138 | Cite as

Determination of barbiturates in plasma by gas chromatography-flame photometric detector after N,N′-dimethylthiomethyl derivatization

  • Yung Hyun Cho
  • Man Ki Park
Original Articles

Abstract

A specific and sensitive gas chromatographic (GC) procedure with the flame photometric detector (FPD) was developed for determination of barbiturates such as barbital, allobarbital, secobarbital, phenobarbital and thiopental in plasma. In order to evaluate the performance of the FPD, the results were campared with those of the flame ionization detector (FID).

After extraction of barbiturates from plasma, the barbiturates were quantitatively N,N′-dimethylthiomethyl (MTM)-derivatized with methylthiomethyl chloride in 1,8-diazabicyclo [5. 4. 0] undec-7-ene catalyst.

The data indicate that the FPD is about 4 times more sensitive than the FID for barbiturates, although it is less reproducible. The FPD also produced chromatogram with less background for extracted plasma sample. The minimum detectable amount of MTM-thiopental on 3% OV-225 column was 4. 4 fmol and that of other MTM-barbiturate was about 10.0 fmol.

Keywords

Barbiturates N,N′-Dimethylthiomethyl derivatization Gas chromatography-flame photometric detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Jaramillo, L.F. and Driscoll, J.N., Analysis of therapeutic and commonly abused drugs in serum and urine by gas-liquid chromatography using a photoionization detector.J. Chromatogr.,186, 637 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    Villen, J. and Petters, I., Anylsis of barbiturates in plasma and urine using gas urine using gas chromatography without prior derivatization.J. Chromatogr.,258, 267 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    Zoccolillo, L., Chartoni, G. and Lozzi, Binary stainary-phase columns for gas chromatography of barbiturates.J. Chromatogr. 236, 339 (1982).CrossRefGoogle Scholar
  4. 4.
    Budd, R.D., Studies of barbiturates degradation following methylation with dimethyl sulfate.J. Chromatogr. 237, 155 (1982).CrossRefGoogle Scholar
  5. 5.
    Martin, H.F. and Driscoll, J.L., Gas chromatographic identification and determination of barbiturates.Anal. Chem. 38, 345 (1966).CrossRefGoogle Scholar
  6. 6.
    Dilli, S. and Pillai, D., Analysis of trace amounts of barbiturates in saliva.J. Chomatogr. 190, 113 (1980).CrossRefGoogle Scholar
  7. 7.
    Ehrsson, H., Gas chromatographic determination of barbiturates after extractive methylation in carbon disulfide.Anal. Chem. 46, 922 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    Greeley, R.H., New approach to derivatization and gas chromatographic analysis of barbiturates.Clin. Chem. 20, 192 (1974).PubMedGoogle Scholar
  9. 9.
    Horning, M.G., Lertratanangkon, K., Stillwell, W.G. and Hill, R.M., Anticonvulsant drug monitoring by GC-MS-COM techniques,J. Chromatogr. Sci. 12, 630 (1974).PubMedGoogle Scholar
  10. 10.
    Draffan, G.H., Clare, R.A. and Williams, F.M., Determination of barbiturates and their metabolites in small-plasma samples by gas chromatography-mass spectrometry.J. Chromatogr. 75, 45 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    Skinner, R.F., Gallaher, E.G. and Predmore, D.B., Rapid determination of barbiturates by gas chromatography-mass spectrometry.Anal. Chem. 45, 574 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    Giovanniello, T.J. and Pecci, J., Isothermal gas chromatographic separation of barbiturates with use of on-column hexylation and heptylation.Clin. Chem. 23, 2154 (1977).PubMedGoogle Scholar
  13. 13.
    Walle, T., Electron-capture gas chromatography of barbituric acids and diphenylhydantoin after perfluorobenzylation.J. Chromatogr. 114, 345 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    Ehrsson, H. and Mellstrom, B., Determination of an N-substituted alliphatic carbonate as trifluoroacetyl derivative by gas chromatography with electron-capture detector.Acta. Pharm. Suecia. 9, 197 (1972).Google Scholar
  15. 15.
    Matthiesin, U., Simple identification of barbitures after methylation with dimethylformamide-dimethylacetal by capillary gas chromatography and mass spectrometry.Beitr. Gerichtl. Med. 37, 337 (1979).Google Scholar
  16. 16.
    Street, H.V., Determination of barbiturates in blood by gas-liquid chromatography.Clin. Chem. Acta. 34, 357 (1971).CrossRefGoogle Scholar
  17. 17.
    Maruyama, M. and Kakemoto, M., Behavior of organic sulfur compounds in flame photometric detectors.J. Chromatogr. Sci.16, 1 (1978).Google Scholar
  18. 18.
    Midha, K.K., Hindmarsh, K.W., McGilveray, I.J. and Cooper, J.K., Identification of urinary catechol and methylated catechol metabolites of phenytoin in humans, monkeys, and dogs by GLC and GLC-mass spectrometry.J. Pharm. Sci. 66, 1596 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    Grutzmacher, H.F. and Arnold, W., Massenspektren von Barbiturseurederivaten.Tetrahedron Letters, 1365 (1966).Google Scholar
  20. 20.
    Costopanagioties, A. and Budzikiewicz, H., Application of mass spectrometry to the analysis of pharmaceuticals-mass spectra of barbituric acid derivatives.Monatsch. Chem. 96, 1800 (1965).CrossRefGoogle Scholar
  21. 21.
    Park, S.H., “Regression Analysis”, revised ed., Daeyungsa publ. Co., Seoul, p. 76 and p. 261 (1985).Google Scholar
  22. 22.
    Patterson, P.L., Comparison of quenching effects in single-and dual-flame photometric detectors,Anal. Chem. 50, 345 (1978).CrossRefGoogle Scholar
  23. 23.
    Fredriksson, P.L. and Cedergren, A., Effect of carrier gas flow geometry on the response of sulfur flame photometric detectors for gas chromatography.Anal. Chem. 53, 614 (1981).CrossRefGoogle Scholar
  24. 24.
    Crider, W.L. and Slater, R.W., Jr., Flame-luminescence intensification and quenching detector (FLIQD) in gas chromatography.Anal. Chem.,41, 531 (1968).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1986

Authors and Affiliations

  • Yung Hyun Cho
    • 1
  • Man Ki Park
    • 1
  1. 1.College of PharmacySeoul National UniversitySeoulKorea

Personalised recommendations