Virchows Archiv B

, Volume 62, Issue 1, pp 251–257 | Cite as

Altered transferrin gene expression in preneoplastic and neoplastic liver lesions induced in rats with N-nitrosomorpholine

  • K. Schiebet
  • H. Stumpf
  • H. Zerban
  • E. Pekel
  • P. Bannasch
Original Articles


The expression of the gene for the iron transport protein transferrin was found to be altered in preneoplastic and neoplastic lesions induced in the rat liver by N-nitrosomorpholine. The total RNA of ten hepatocellular carcinomas (HCC) was investigated by Northern blot analysis using a cDNA-probe comprising 150 bp of the 3′ region and compared with the total hepatic RNA in untreated rats. Seven hepatocellular carcinomas showed slight or pronounced reduction in transferrin expression. In situ hybridization of two additional hepatocellular carcinomas revealed marked reduction in the mRNA level for the transferrin gene compared with the surrounding tissue. In contrast, the majority of early preneoplastic lesions storing excess glycogen and tigroid cell foci expressed increased levels of transferrin mRNA. The loss of glycogen in mixed cell foci, which represent a later stage of hepatocarcinogenesis, was usually accompanied by a decrease in transferrin mRNA suggesting a close relationship between this change in gene expression and cellular dedifferentiation emerging during hepatocarcinogenesis.

Key words

Transferrin Gene expression Hepatocar-cinogenesis Preneoplastic lesions In situ hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian GS, Korinek BW, Bowman BH, Yang F (1986) The human transferrin gene. 5′ region contains conserved sequences which match the control elements regulated by heavy metals, gluco-corticoids and acute phase reaction. Gene 49:167–175PubMedCrossRefGoogle Scholar
  2. Aldred AR, Dickson PW, Marley PD, Schreiber G (1987) Distribu-tion of transferrin synthesis in brain and other tissues in the rat. J Biol Chem 262:5293–5297PubMedGoogle Scholar
  3. Angerer L, Angerer RC (1989) In situ hybridization with35S-la-belled RNA probes. DuPont Biotech update 4:1–6Google Scholar
  4. Angerer RC, Cox KH, Angerer LM (1985) In situ hybridization to cellular RNAs. In: Setlow JK, Hollaender A (eds) Genetic engineering vol 7. Plenum Press, New York, pp 43–64Google Scholar
  5. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biol-ogy. Greene Publishing Associates and Wiley Interscience, John Wiley & Sons, New YorkGoogle Scholar
  6. Bannasch P (1968) The cytoplasm of hepatocytes during carcino-genesis. Recent Results Cancer Research, vol 19. Springer, Hei-delberg, pp 1–100Google Scholar
  7. Bannasch P (1990)a Pathobiology of chemical hepatocarcinogene-sis: Recent progress and perspectives. Part I. Cytomorphologi-cal changes and cell proliferation. J Gastroenterol Hepatol 5:149–159PubMedCrossRefGoogle Scholar
  8. Bannasch P (1990 b) Pathobiology of chemical hepatocarcinogene-sis: Recent progress and perspectives. Part II. Metabolic and molecular changes. J Gastroenterol Hepatol 5:310–320PubMedCrossRefGoogle Scholar
  9. Bannasch P, Zerban H (1990) Tumours of the liver. In: Turusov V, Mohr U (eds) Pathology of tumours in laboratory animals, vol 1. Tumours of the Rat, 2nd edition. International Agency for Research on Cancer, Lyon, pp 199–240Google Scholar
  10. Bannasch P, Zerban H (1992) Predictive value of hepatic preneo-plastic lesions as indicators of carcinogenic response. In: Vainio H, Magee P, McGregor D, McMichael AJ (eds) Mechanisms of carcinogenesis in risk identification. IARC Scientific Publica-tions, International Agency for Research on Cancer, Lyon pp 381–419Google Scholar
  11. Bannasch P, Benner U, Enzmann H, Hacker HJ (1985) Tigroid cell foci and neoplastic nodules in the liver of rats treated with a single dose of aflatoxin B1. Carcinogenesis 6:1641–1648PubMedCrossRefGoogle Scholar
  12. Bannasch P, Hacker HJ, Klimek F, Mayer D, Stumpf H, Zerban H (1991) Cytochemical, microbiochemical and molecular genet-ic analysis of chemical carcinogenesis. Progr Histochem Cyto-chem 23:45–60Google Scholar
  13. Barnes D, Sato G (1980) Serum-free cell culture: a unifying ap-proach. Cell 22:649–655PubMedCrossRefGoogle Scholar
  14. Bowman BH, Yang F, Adrian GS (1988) Transferrin: evolution and genetic regulation of expression. In: Caspari EW, Scanda-lios JG (eds) Advances in genetics, vol 25. Academic Press, New York, pp 1–38Google Scholar
  15. Brunel F, Ochoa A, Schaeffer E, Boissier F, Guillou Y, Cereghini S, Cohen GN, Zakin MM (1988) Interactions of DN A-binding proteins with the 5′region of the human transferrin gene. J Biol Chem 263:10180–10185PubMedGoogle Scholar
  16. Cereghini S, Blumenfeld M, Yaniv M (1988) A liver-specific factor essential for albumin transcription differs between differentiat-ed and dedifferentiated rat hepatoma cells. Genes Dev 2:957–974PubMedCrossRefGoogle Scholar
  17. Cereghini S, Yaniv M, Cortese R (1990) Hepatocyte dedifferentia-tion and extinction is accompanied by a block in the synthesis of mRNA coding for the transcription factor HNF1/LFB1. EMBO J 9:2257–2263PubMedGoogle Scholar
  18. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases. Biochemistry 18:5294–5299PubMedCrossRefGoogle Scholar
  19. Clayton DF, Darnell JrJE (1983) Changes in liver-specific com-pared to common gene transcription during primary culture of mouse hepatocytes. Mol Cell Biol 3:1552–1561PubMedGoogle Scholar
  20. Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502PubMedCrossRefGoogle Scholar
  21. Eriksson LC, Torndal U-B, Andersson GN (1989) The regulation of cell-surface receptors in chemical hepatocarcinogenesis. In: Bannasch P, Keppler D, Weber G(eds) Liver cell carcinoma. Kluwer Academic Publishers, Dordrecht Boston London, pp 315–327Google Scholar
  22. Frain M, Swart G, Monaci P, Nicosia A, Stämpfli S, Frank R, Cortese R (1989) The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Cell 59:145–157PubMedCrossRefGoogle Scholar
  23. Isom H, Georgoff I, Salditt-Georgieff M, Darnell Jr JE (1987) Persistence of liver-specific messenger RNA in cultured hepato-cytes: different regulatory events for different genes. J Cell Biol 105:2877–2885PubMedCrossRefGoogle Scholar
  24. James R, Bradshow RA (1984) Polypeptide growth factors. Annu Rev Biochem 53:259–292PubMedCrossRefGoogle Scholar
  25. Johnson PF (1990) Transcriptional activators in hepatocytes. Cell Growth Differ 1:47–51PubMedGoogle Scholar
  26. de Jong G, van Dijk JP, Eijk HG (1990) The biology of transferrin. Clin Chim Acta 190:1–46PubMedCrossRefGoogle Scholar
  27. Kahn A, Levin MJ, Zakin MM, Bloch B (1987) The transferrin gene. In: Guroff G (ed) Oncogenes, genes and growth factors. Wiley, New York, pp 277–309Google Scholar
  28. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning; a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  29. Mayer D, Klimek F, Hacker HJ, Seelmann-Eggebert G, Bannasch P (1989) Carbohydrate metabolism in hepatic preneoplasia. In: Bannasch P, Keppler D, Weber G (eds) Liver Cell Carcinoma. Kluwer Academic Publishers, Dordrecht Boston London, pp 329–347Google Scholar
  30. McKnight KS, Hammer RE, Kuenzel EA, Brister RL (1983) Ex-pression of the chicken transferrin gene in transgenic mice. Cell 34:335–341PubMedCrossRefGoogle Scholar
  31. Pitot HC (1990) Altered hepatic foci: Their role in murine hepato-carcinogenesis. Annu Rev Pharmacol Toxicol 30:465–500PubMedCrossRefGoogle Scholar
  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor New YorkGoogle Scholar
  33. Sanger F, Nickler S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  34. Stitzel KA, Horn PA, Ezra MF (1990) Spontaneous basophilic foci of hepatocellular alteration in Fischer 344 female rats do not exclude iron. Carcinogenesis 11:2253–2254PubMedCrossRefGoogle Scholar
  35. Tuil D, Vaulont S, Levin MJ, Munnich A, Monguilewsky M, Bou-ton MM, Brissot P, Dreyfus JC, Kahn A (1985) Transient tran-scriptional inhibition of the transferrin gene by cyclic AMP. FEBS Lett 189:310–314PubMedCrossRefGoogle Scholar
  36. Williams GM, Klaiber M, Parker SE, Farber E (1976) Nature of early appearing, carcinogen-induced liver lesions resistant to iron accumulation. J Natl Cancer Inst 57:157–165PubMedGoogle Scholar
  37. Yang F, Friedrichs WE, Buchanan JM, Herbert DC, Weaker FJ, Brock JH, Bowman BH (1990) Tissue specific expression of mouse transferrin during development and aging. Mech Age Dev 56:187–197CrossRefGoogle Scholar
  38. Yang F, Lum JB, McGill JR, Moore CM, Naylor SL, van Bragt PH, Baldwin WD, Bowman BH (1984) Human transferrin: cDNA characterisation and chromosomal localization. Proc Natl Acad Sci USA 81:2752–2756PubMedCrossRefGoogle Scholar
  39. Zerban H, Rabes HM, Bannasch P (1989) Sequential changes in growth kinetics and cellular phenotype during hepatocarcino-genesis. J Cancer Res Clin Oncol 115:329–334PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • K. Schiebet
    • 1
  • H. Stumpf
    • 1
  • H. Zerban
    • 1
  • E. Pekel
    • 1
  • P. Bannasch
    • 1
  1. 1.Abteilung für CytopathologieDeutsches KrebsforschungszentrumHeidelbergFederal Republic of Germany

Personalised recommendations