Virchows Archiv B

, Volume 6, Issue 1, pp 350–364 | Cite as

Growth of elementary blood vessels in diffusion chambers

I. Process of formation and conditioning factors
  • M. Aloisi
  • C. Giacomin
  • R. Tessari


  1. 1.

    The formation of a network of new capillaries from expiants of muscle, omentum, subcutaneous tissue, tendon and cardiac valve tissue in Algire’s diffusion chambers has been studied in different conditions in order to elucidate some of the mechanisms involved in this type of regeneration.

  2. 2.

    Evidence has been produced to show that new capillaries may arise not only by the sprouting or bulging mechanism from pre-existing capillaries and small vessels of the expiant, but also by autochtonous proliferation of pre-existing endothelia or by differentiation of a fibroblast-like proliferation, independently of any pre-existing vessels. Bundles of proliferated cells form a pre-capillary network which often assumes a syncytial character and lumina are subsequently produced by degeneration of the inner cores of the network, or by shedding of the inner cells of the bundles.

  3. 3.

    The presence of extravasated blood red cells with the tissue expiants enhances capillary formation. The extravasated blood becomes eventually occluded in the lumen of the new capillary network, and this indicates that the capillary network grows as an open system.



Vascular Network Cardiac Valve Capillary Network Diffusion Chamber Capillary Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algire, G. H., Weaver, J. M., Prehn, R. T.: Growth of cellsin vivo in diffusion chambers. I. Survival of homografts in immunized mice. J. nat. Cancer Inst.15, 493–507 (1954).PubMedGoogle Scholar
  2. Bailey, J. P., Cubberley, J. P., Stephens, C. Al. Jr., Stanfield, A. B.: Vascular networks from expiants of human synovialisin vitro. Anat. Rec.147, 525–527 (1963).PubMedCrossRefGoogle Scholar
  3. Benewolenskaja, S. W.: Hematopoiesis in cultures of the embryonic liver of man. Arch. exp. Zellforsch.9, 128–141 (1929).Google Scholar
  4. Cameron, G., Chambers, R.: Neoplasm studies. III, Organization of cells of human tumors in tissue culture. Amer. J. Cancer30, 115–129 (1937).Google Scholar
  5. Clark, E. R.: Observations on living growing lymphatics in the tail of the frog larva. Anat. Rec.3, 183–198 (1909).CrossRefGoogle Scholar
  6. — Studies on the growth of blood vessels in the tail of the frog larva, by observation and experiment on the living animal. Amer. J. Anat.23, 37–88 (1918).CrossRefGoogle Scholar
  7. Herzog, G., Schopper, W.: Über das Verhalten der Blutgefäße in der Kultur. Arch. exp. Zellforsch.11, 202–218 (1931).Google Scholar
  8. Lewis, W. H.: The outgrowth of endothelium and capillaries in tissue culture. Johns Hopk. Hosp. Bull.48, 242–253 (1931).Google Scholar
  9. Maximow, A.: Über die Entwicklungsfähigkeiten der Blutleucocyten und des Blutgef äßendothels bei Entzündung und in Gewebskulturen. Klin. Wschr.4, 1486–1488 (1925).CrossRefGoogle Scholar
  10. Murray, M. R., Stout, A. P.: Cultural characteristics of hemangioendothelioma. Amer. J. Path.20, 277–283 (1944).Google Scholar
  11. Petrakis, N. L., Davis, M., Lucia, S. P.: Thein vivo differentiation of human leucocytes into histiocytes, fibroblasts and fat cells in subcutaneous diffusion chambers. Blood17, 109–118 (1961).PubMedGoogle Scholar
  12. Prehn, R. T., Weaver, J. M., Algire, G. H.: The diffusion chamber technique applied to a study of the nature of homograft resistance. J. nat. Cancer Inst.15, 509–517 (1954).PubMedGoogle Scholar
  13. Rienhoff, W. F., Jr.: Development and growth of the metanephros on permanent kidney in chick embryos (8 to 10 days incubation). Johns Hopk. Hosp. Bull.33, 392–406 (1922).Google Scholar
  14. Schoefl, G. I.: Studies on inflammation. III, Growing capillaries: their structure and permeability. Virchows Arch. path. Anat.337, 97–141 (1963).CrossRefGoogle Scholar
  15. Schopper, W.: Netzexplantation. Verh. dtsch. path. Ges.24, 25–28 (1929).Google Scholar
  16. Scriba, K.: Explantationstudien über das Gefäßwachstum bei 9 Tage alten Hühnerembryonen. Arch. exp. Zellforsch.17, 68–77 (1935).Google Scholar
  17. Törö, E.: Untersuchungen über die Potenz der Endothelzellen bei der Gefäßbildung in der Gewebekultur. Arch. exp. Zellforsch.20, 156–171 (1937).Google Scholar
  18. Weaver, J. M., Algire, G. H., Prehn, R. T.: The growth of cellsin vivo in diffusion chambers. II. The role of cells in the destruction of homografts in mice. J. nat. Cancer Inst.15, 1737–1767 (1955).PubMedGoogle Scholar
  19. White, J. F., Parshley, M. S.: Growthin vitro of blood vessels from bone marrow of adult chickens. Amer. J. Anat.89, 321–345 (1951).PubMedCrossRefGoogle Scholar
  20. Williams, R. G.: The fate of minute blood vessels in omentum transplanted as autografts to the rabbit ear. Anat. Rec.116, 495–505 (1953).PubMedCrossRefGoogle Scholar
  21. — Experiments on the growth of blood vessels in thin tissue and in small autografts. Anat. Rec.133, 465–485 (1959).PubMedCrossRefGoogle Scholar
  22. Woodard, W. C., Pomerat, C. M.: The development of patent blood vessels from adult human rib marrow in tissue culture. Anat. Rec.117, 663–683 (1953).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • M. Aloisi
    • 1
  • C. Giacomin
    • 1
  • R. Tessari
    • 1
  1. 1.Institute of General Pathology and Center for the Study of Muscle Biology and Physiopathology of the National Research CouncilUniversity of PaduaItaly

Personalised recommendations