Advertisement

Pramana

, Volume 65, Issue 2, pp 165–176 | Cite as

Quantum states with continuous spectrum for a general time-dependent oscillator

  • Jeong-Ryeol Choi
Article

Abstract

We investigated quantum states with continuous spectrum for a general time-dependent oscillator using invariant operator and unitary transformation methods together. The form of the transformed invariant operator by a unitary operator is the same as the Hamiltonian of the simple harmonic oscillator:I’ = p2/2 +ω 2 q 2/2. The fact thatω 2 of the transformed invariant operator is constant enabled us to investigate the system separately for three cases, whereω 2 > 0,ω 2 < 0, andω 2 = 0. The eigenstates of the system are discrete forω 2 > 0. On the other hand, forω 2 <− 0, the eigenstates are continuous. The time-dependent oscillators whose spectra of the wave function are continuous are not oscillatory. The wave function forω 2 < 0 is expressed in terms of the parabolic cylinder function. We applied our theory to the driven harmonic oscillator with strongly pulsating mass.

Keywords

Quantum states with continuous spectrum time-dependent oscillator invariant operator unitary operator propagator 

PACS Nos

03.65.Ca 03.65.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G E Giacaglia,Perturbation methods in nonlinear systems (Springer, Berlin, 1972), Applied Mathematical Science Series, Vol. 18Google Scholar
  2. [2]
    W T Van Horssen,SIAM J. Appl. Math. 59, 1444 (1999)CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    L S Brown,Phys. Rev. Lett. 66, 527 (1991)CrossRefADSMathSciNetMATHGoogle Scholar
  4. [4]
    Fu-li Li, S J Wang, A Weiguny and D L Lin,J. Phys. A27, 985 (1994)ADSMathSciNetGoogle Scholar
  5. [5]
    C I Um, J R Choi and K H Yeon,J. Korean Phys. Soc. 38, 447 (2001)Google Scholar
  6. [6]
    J Y Ji, J K Kim and S P Kim,Phys. Rev. A51, 4268 (1995)ADSGoogle Scholar
  7. [7]
    J R Choi,PramanaJ. Phys. 61, 7 (2003)CrossRefADSGoogle Scholar
  8. [8]
    C I Um, J R Choi, K H Yeon and T F George,J. Korean Phys. Soc. 40, 969 (2002)Google Scholar
  9. [9]
    R L Kobes and K L Kowalski,Phys. Rev. D34, 513 (1986)ADSMathSciNetGoogle Scholar
  10. [10]
    N P Landsman and Ch G van Weert,Phys. Rep. 145, 141 (1987)CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    E Calzetta and B L Hu,Phys. Rev. D37, 2878 (1988)ADSMathSciNetGoogle Scholar
  12. [12]
    A O Caldeira and A J Leggett,Ann. Phys. 149, 374 (1983)CrossRefADSGoogle Scholar
  13. [13]
    S Baskoutas, A Jannussis and R Mignani,J. Phys. A27, 2189 (1994)ADSMathSciNetGoogle Scholar
  14. [14]
    A O Caldeira and A J Leggett,Phys. Rev. Lett. 46, 211 (1981)CrossRefADSGoogle Scholar
  15. [15]
    A Widom and T D Clark,Phys. Rev. Lett. 48, 63 (1982)CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    B K Berger,Phys. Rev. D12, 368 (1975)ADSGoogle Scholar
  17. [17]
    H Lamba, S McKee and R Simpson,J. Phys. A31, 7065 (1998)ADSGoogle Scholar
  18. [18]
    H Dehmelt,Rev. Mod. Phys. 62, 525 (1990)CrossRefADSGoogle Scholar
  19. [19]
    W Paul,Rev. Mod. Phys. 62, 531 (1990)CrossRefADSGoogle Scholar
  20. [20]
    J B Maddox and E R Bittner,Phys. Rev. E65, 026143 (2002)ADSGoogle Scholar
  21. [21]
    Z Qi,Phys. Rev. A53, 3805 (1996)ADSGoogle Scholar
  22. [22]
    S Yngve and S Linnaeus,J. Phys. A19, 3017 (1986)ADSMathSciNetGoogle Scholar
  23. [23]
    S Guillouzic, I L’Heureux and A Longtin,Phys. Rev. E61, 4906 (2000)ADSGoogle Scholar
  24. [24]
    K H Yeon, S S Kim, Y M Moon, S K Hong, C I Um and T F George,J. Phys. A34, 7719 (2001)ADSMathSciNetGoogle Scholar
  25. [25]
    J R Choi,Mod. Phys. Lett. B17, 1365 (2003)ADSGoogle Scholar
  26. [26]
    M A Castagnino, H Giacomini and L Lara,Phys. Rev. D63, 044003 (2001)ADSMathSciNetGoogle Scholar
  27. [27]
    H Suzuki and M Tanaka,Phys. Rev. D49, 6692 (1994)ADSGoogle Scholar
  28. [28]
    R Haydock,Phys. Rev. B63, 125413 (2001)ADSGoogle Scholar
  29. [29]
    T Geisel, R Ketzmerick and G Petschel,Phys. Rev. Lett. 66, 1651 (1991)CrossRefADSGoogle Scholar
  30. [30]
    O Watanabe, K Ogura, T Cho and Md R Amin,Phys. Rev. E63, 056503 (2001)ADSGoogle Scholar
  31. [31]
    H R Lewis Jr,Phys. Rev. Lett. 27, 510 (1967)CrossRefADSGoogle Scholar
  32. [32]
    H R Lewis Jr and W B Riesenfeld,J. Math. Phys. 10, 1458 (1969)CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    K-H Yeon, D-H Kim, C-I Um, T F George and L N Pandey,Phys. Rev. A55, 4023 (1997)ADSMathSciNetGoogle Scholar
  34. [34]
    D C Khandekar, S V Lawande and K V Bhagwat,Path-integral methods and their applications (World Scientific, Singapore, 1993) p. 10MATHGoogle Scholar
  35. [35]
    A Erdély,Higher transcendental functions (McGraw-Hill, New York, 1953) Vol. II, pp. 116–196Google Scholar
  36. [36]
    A Erdély,Higher transcendental functions (McGraw-Hill, New York, 1953) Vol. I, pp. 255–267Google Scholar
  37. [37]
    I A Pedrosa,Phys. Rev. A55, 3219 (1997)ADSGoogle Scholar
  38. [38]
    M S Abdalla and R K Colegrave,Phys. Rev. A32, 1958 (1985)ADSMathSciNetGoogle Scholar
  39. [39]
    R K Colegrave and M S Abdalla,J. Phys. A15, 1549 (1982)ADSMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  1. 1.Department of New Material Science, Division of Natural SciencesSun Moon UniversityAsanKorea

Personalised recommendations