Advertisement

Folia Microbiologica

, Volume 38, Issue 4, pp 320–324 | Cite as

Drought tolerance ofRhizobium leguminosarum andR. meliloti

  • J. Nečásek
  • M. Němcová
  • L. Lisá
  • J. Dusbábková
  • V. Našinec
  • D. Požárková
Papers

Abstract

Cell suspension ofRhizobium leguminosarum bv.viciae D-253,R. leguminosarum bv.viciae D-560 andR. meliloti D-557 were incorporated into sterile diatomaceous earth (DE) and dried at room temperature. Initial numbers of colony-forming units (CFU), expressed as log10, were 8.27, 8.36 and 8.51, respectively. After 5 months of storage the CFU numbers were 0.00, 5.99 and 7.43, respectively.R. meliloti D-557 showed only minor lowering of the CFU number even after 16 months of storage (log10=7.07). After 7 months of storage in DE some single-colony isolates of D-253 produced 10–100 times higher CFU numbers than the original strain. The isolates of D-560 were much more drought-tolerant. The cells of the original strain died after 7 months of storage, log10 of CFU was 6–7 in the isolates. In both strains some of their drought-tolerant isolates had the same specific acetylene-reducing activity of nodule tissue as the original strains. Diatomaceous earth seems to be a prospective carrier for the formulation of bacterization preparations.

Keywords

Drought Tolerance Diatomaceous Earth Original Strain Rhizobium Population Dinitrogen Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beringer J.E., Brevin N.J., Johnston A.W.B.: Genetics, pp. 17–23 in W.J. Broughton (Ed.):Nitrogen Fixation. Clarendon, Oxford 1982.Google Scholar
  2. Brockwell J.: Inoculation methods for field experiments, pp. 211–227 in J.M. Vincent (Ed.):Nitrogen Fixation in Legumes. Academic Press, Sydney - London- New York 1982.Google Scholar
  3. Bromfield E.S.P., Jones D.G.: Studies on acid tolerance ofRhizobium trifolii in culture and soil.J.Appl.Bacteriol.48, 253–264 (1980).Google Scholar
  4. Bushby H.V.A.: Ecology, pp. 35–85 in W.J. Broughton (Ed.):Nitrogen Fixation. Clarendon, Oxford 1982.Google Scholar
  5. Eardly B.D., Materon L.A., Smith N.H., Johnson D.A., Rumbach M.D., Selander R.K.: Genetic structure of natural population of nitrogen-fixing bacteriumRhizobium meliloti.Appl.Environ.Microbiol.56, 187–194 (1990).PubMedGoogle Scholar
  6. Gibson A.H., Demezas D.H., Gault R.R., Bhuvaneswari T.V., Brockwell J.: Genetic stability inRhizobia in the field, pp. 141–148 in D.L. Keister, P.B. Cregan (Eds):The Rhizosphere and Plant Growth. Kluwer, Haag 1991.Google Scholar
  7. Hartmann A., Amarger N.: Genotypic diversity of an indigenousRhizobium meliloti field population assessed by plasmid profiles, DNA fingerprinting and insertion sequence.Can.J.Microbiol.37, 600–608 (1991).CrossRefGoogle Scholar
  8. Harrison S.P., Jones D.G., Young J.P.W.:Rhizobium population genetics: Genetic variation within and between populations from diverse locations.J.Gen.Microbiol.135, 1061–1069 (1989).Google Scholar
  9. Hoben H.J., Aung N.N., Somasegaran P., Kang N.G.: Oil as adhesives for seed inoculation and their influence on the survival ofRhizobium spp. andBradyrhizobium spp. on inoculated seeds.World J.Microbiol.Biotechnol.7, 324–330 (1991).CrossRefGoogle Scholar
  10. Howieson J.G., Ewing M.A., D’Antonio M.F.: Selection of acid tolerance inRhizobium meliloti.Plant & Soil105, 179–188 (1988).CrossRefGoogle Scholar
  11. Karanja N.K., Wood M.: SelectingRhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya: Infectiveness and tolerance of acidity and aluminium.Plant & Soil112, 7–13 (1988a).CrossRefGoogle Scholar
  12. Karanja N.K., Wood M.: SelectingRhizobium phaseoli strains for the use with beans (Phaseolus vulgaris L.) in Kenya: Tolerance of high temperature and antibiotic resistance.Plant & Soil112, 15–22 (1988b).CrossRefGoogle Scholar
  13. Kosanke J.W., Osburn R.M., Shuppe G.I., Smith R.S.: Slow rehydratation improves the recovery of dried bacterial populations.Can.J.Microbiol.38, 520–525 (1992).PubMedGoogle Scholar
  14. Marečková H.: Bacteria for nitrogen fixation, pp. 217–232 in H.J. Rhem, G. Reed (Eds):Biotechnology. Verlag Chemie, Weinheim 1983.Google Scholar
  15. Marečková H., Slepičková M. (Eds):Catalogue of RhizobiumCollection. Res. Inst. Crop Production, Prague 1983.Google Scholar
  16. Mary P., Ochin D., Tailiez R.: Rates of drying and survival ofRhizobium meliloti.Appl.Environ.Microbiol.50, 207–211 (1985).PubMedGoogle Scholar
  17. Merbach W., Augustin J., Miens E.: Einfluss von Aluminium auf die Leguminosen — Rhizobien-Symbiose.Zbl.Mikrobiol.145, 521–527 (1990).Google Scholar
  18. Mullen N.D., Wollum A.G.: Variation among different cultures ofBradyrhizobium japonicum strains USDA 110 and 122.Can.J.Microbiol.35, 583–588 (1989).CrossRefGoogle Scholar
  19. Osa-Afiana L.O., Alexander M.: Effect of moisture on the survival ofRhizobium in soil.Soil Sci.Soc.Amer.J.43, 925–930 (1979).Google Scholar
  20. Paau A.S.: Improvement ofRhizobium inoculants by mutation, genetic engineering and formulation.Biotech.Adv.9, 173–184 (1991).CrossRefGoogle Scholar
  21. Peňa-Cabriales J.J., Alexander M.: Survival ofRhizobium in soils undergoing drying.Soil Sci.Soc.Amer.J.43, 962–966 (1979).Google Scholar
  22. Paczkowski M.W., Berryhill D.L.: Survival ofRhizobium phaseoli in coal-based legume inoculants.Appl.Environ.Microbiol.38, 612–615 (1979).PubMedGoogle Scholar
  23. Roughley R.J.: Legume inoculants; their technology and application, pp. 259–267 in D.P. Beck, L.A. Materon (Eds):Nitrogen Fixation by Legumes in Mediterranean Agriculture. Martinus Nijhoff, Dordrecht 1988.Google Scholar
  24. Škrdleta V., Gaudinová A., Němcová M., Hyndráková A.: Symbiotic dinitrogen fixation as effected by short-term application of nitrate to nodulatedPisum sativum L.Folia Microbiol.25, 155–161 (1980).CrossRefGoogle Scholar
  25. Škrdleta V., Němcová M., Lisá L., Gaudinová A.: Root respiration and potential N2 fixation in pea in relation to the source of nitrogen nutrition. (In Czech)Rostl.Výr.30, 1171–1178 (1984).Google Scholar
  26. Škrdleta V., Němcová M., Lisá L., Novák K., Kovářová D.: Comparative response ofPisum sativum nodulated with indigenous soilRhizobium populations and/or co-inoculated with aRhizobium leguminosarum strain. I. Acetylene-reducing dihydrogen- and carbon dioxide-evolving activities.Folia Microbiol.36, 271–276 (1991).CrossRefGoogle Scholar
  27. Taylor R.W., Sistami K.R., Patel S.: Soybean —Rhizobium combination for tolerance to low P-high aluminium.J.Agron.Corp Sci.165, 54–60 (1990).CrossRefGoogle Scholar
  28. Vargas A.A.T., Graham P.H.: Cultivar and pH effects on competition for nodule sites between isolates ofRhizobium in beans.Plant & Soil117, 195–200 (1989).CrossRefGoogle Scholar
  29. Vincent J.M.:A Manual for Practical Study of Root-Nodule Bacteria. Blackwell, Oxford 1970.Google Scholar
  30. Vincent J.M. (Ed.):Nitrogen Fixation in Legumes. Academic Press, Sydney- London - New York 1982.Google Scholar
  31. Young J.P.W.:Rhizobium population genetics: Enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site.J.Gen.Microbiol.131, 2399–2408 (1985).Google Scholar

Copyright information

© Folia Microbiologica 1993

Authors and Affiliations

  • J. Nečásek
    • 1
  • M. Němcová
    • 2
  • L. Lisá
    • 2
  • J. Dusbábková
    • 1
  • V. Našinec
    • 1
  • D. Požárková
    • 1
  1. 1.Institute of Plant Molecular BiologyAcademy of Sciences of the Czech RepublicČeské Budějovice
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4

Personalised recommendations