An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese

  • Kan Usuda
  • Koichi Kono
  • Tomotaro Dote
  • Misuzu Watanabe
  • Hiroyasu Shimizu
  • Yoshimi Tanimoto
  • Emi Yamadori
Review Article


The biological, medical and environmental roles of trace elements have attracted considerable attention over the years. In spite of their relevance in nutritional, occupational and toxicological aspects, there is still a lack of consistent and reliable measurement techniques and reliable information on reference values. In this review our understandings of the urinary profilings of boron, lithium and strontium are summarized and fundamental results obtained in our laboratory are discussed.

Over the past decade we have successfully used inductively coupled plasma emission spectrometry for the determination of reference values for urinary concentrations of boron, lithium and strontium. Taking into account the short biological half-life of these elements and the fact that their major excretion route is via the kidney, urine was considered to be a suitable material for monitoring of exposure to these elements. We confirmed that urinary concentrations of boron, lithium and strontium follow a lognormal distribution. The geometric mean reference values and 95% confidence intervals were 798 μg/l (398–1599 μg/l) for boron, 23.5 μg/l (11.0–50.5 μg/l) for lithium and 143.9 μg/l (40.9–505.8 μg/l) for strontium. There were no discrepancies between our values and those previously reported. Our reference values and confidential intervals can be used as guidelines for the health screening of Japanese individuals to evaluate environmental or occupational exposure to these elements.

Key words

boron lithium strontium log-normal distribution reference values 


  1. (1).
    Hegsted M, Keenan MJ, Siver F, Wozniak P. Effect of boron on vitamin D deficient rats. Biol Trace Elem Res. 1991;28:243–255.PubMedGoogle Scholar
  2. (2).
    Schrauzer GN, Shrestha KP. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res. 1990;25:105–113.PubMedGoogle Scholar
  3. (3).
    Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004; 350:459–468.PubMedCrossRefGoogle Scholar
  4. (4).
    Chang BL, Robbins WA, Wei F, Xun L, Wu G, Li N, et al. Boron workers in China: exploring work and lifestyle factors related to boron exposure. AAOHN J. 2006;54:435–443.PubMedGoogle Scholar
  5. (5).
    Kirrane BM, Nelson LS, Hoffman RS. Massive strontium ferrite ingestion without acute toxicity. Basic Clin Pharmacol Toxicol. 2006;99:358–359.PubMedCrossRefGoogle Scholar
  6. (6).
    Schrauzer GN. Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr. 2002;21:14–21.PubMedGoogle Scholar
  7. (7).
    Joachim N. ICP Emission Spectrometry: A Practical Guide. Weinheim, Germany: Wiley-VCH; 2003.Google Scholar
  8. (8).
    Heitland P, Koster HD. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta. 2006;365:310–318.PubMedCrossRefGoogle Scholar
  9. (9).
    Zeiner M, Ovari M, Zaray G, Steffan I. Selected urinary metal reference concentrations of the Viennese population—urinary metal reference values (Vienna). J Trace Elem Med Biol. 2006;20:240–244.PubMedCrossRefGoogle Scholar
  10. (10).
    Usuda K, Kono K, Dote T, Miyata K, Nishiura H, Shimahara M, et al. Study on urine boron reference values of Japanese men: use of confidence intervals as an indicator of exposure to boron compounds. Sci Total Environ. 1998;220:45–53.PubMedCrossRefGoogle Scholar
  11. (11).
    Iguchi K, Usuda K, Kono K, Dote T, Nishiura H, Shimahara M, et al. Urinary lithium: distribution shape, reference values. and evaluation of exposure by inductively coupled plasma argon-emission spectrometry. J Anal Toxicol. 1999;23:17–23.PubMedGoogle Scholar
  12. (12).
    Usuda K, Kono K, Hayashi S, Kawasaki T, Mitsui G, Shibutani T, et al. Determination of reference concentrations of strontium in urine by inductively coupled plasma emission spectrometry. Environ Health Prev Med. 2006;11:11–16.CrossRefGoogle Scholar
  13. (13).
    Woods WG. An introduction to boron: history, sources, uses, and chemistry. Environ Health Perspect. 1994;102:Suppl 7:5–11.PubMedCrossRefGoogle Scholar
  14. (14).
    Cochran DG. Toxic effects of boric acid on the German cockroach. Experientia. 1995;51:561–563.PubMedCrossRefGoogle Scholar
  15. (15).
    Baysal E, Altinok M, Colak M, Ozaki SK, Toker H. Fire resistance of Douglas fir (Pseudotsuga menzieesi) treated with borates and natural extractives. Bioresour Technol. 2007;98:1101–1105.PubMedCrossRefGoogle Scholar
  16. (16).
    Richold M. Boron exposure from consumer products. Biol Trace Elem Res. 1998;66:121–129.PubMedCrossRefGoogle Scholar
  17. (17).
    Fox KK, Cassani G, Facchi A, Schroder FR, Poelloth C, Holt MS. Measured variation in boron loads reaching European sewage treatment works. Chemosphere. 2002;47:499–505.PubMedCrossRefGoogle Scholar
  18. (18).
    Bolanos L, Lukaszewski K, Bonilla I, Blevins D. Why boron? Plant Physiol Biochem. 2004;42:907–912.PubMedCrossRefGoogle Scholar
  19. (19).
    Rainey C, Nyquist L. Multicountry estimation of dietary boron intake. Biol Trace Elem Res. 1998;66:79–86.PubMedCrossRefGoogle Scholar
  20. (20).
    Newnham RE. Essentiality of boron for healthy bones and joints. Environ Health Perspect. 1994;102Suppl 7:83–85.PubMedCrossRefGoogle Scholar
  21. (21).
    Meacham SL, Taper LJ, Volpe SL. Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosporus, magnesium, and boron in female athletes. Environ Health Perspect. 1994;102Suppl 7: 79–82.PubMedCrossRefGoogle Scholar
  22. (22).
    Moore JA. An assessment of boric acid and borax using the IEHR Evaluative Process for Assessing Human Developmental and Reproductive Toxicity of Agents. Expert Scientific Committee. Reprod Toxicol. 1997;11:123–160.PubMedCrossRefGoogle Scholar
  23. (23).
    Yazbeck C, Kloppmann W, Cottier R, Sahuquillo J, Debotte G, Huel G. Health impact evaluation of boron in drinking water: a geographical risk assessment in Northern France. Environ Geochem Health. 2005;27:419–427.PubMedCrossRefGoogle Scholar
  24. (24).
    Argust P. Distribution of boron in the environment. Biol Trace Elem Res. 1998;66:131–143.PubMedCrossRefGoogle Scholar
  25. (25).
    Usuda K, Kono K, Orita Y, Dote T, Iguchi K, Nishiura H, et al. Serum and urinary boron levels in rats after single administration of sodium tetraborate. Arch Toxicol. 1998;72:468–474.PubMedCrossRefGoogle Scholar
  26. (26).
    Kraepelin E. One Hundred Years of Psychiatry. New York: Philosophical Library: 1962.Google Scholar
  27. (27).
    Marneros A, Angst J. Bipolar Disorders: 100 Years after Manic Depressive Insanity. Boston: Kluwer Academic Publishers; 2000.Google Scholar
  28. (28).
    Kang K, Meng YS, Breger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006:311:977–980.PubMedCrossRefGoogle Scholar
  29. (29).
    Tanaka J, Yamashita M, Yamashita M, Kajigaya H. Esophageal electrochemical burns due to button type lithium batteries in dogs. Vet Hum Toxicol. 1998;40:193–196.PubMedGoogle Scholar
  30. (30).
    Beery KE, Ladisch MR. Chemistry and properties of starch based desiccants. Enzyme Microb Technol. 2001;28:573–581.PubMedCrossRefGoogle Scholar
  31. (31).
    Barr RD, Clarke WB, Clarke RM, Venturelli J, Norman GR, Downing RG. Regulation of lithium and boron levels in normal human blood: environmental and genetic considerations. J Lab Clin Med. 1993;121:614–619.PubMedGoogle Scholar
  32. (32).
    Zaldivar R. High lithium concentrations in drinking water and plasma of exposed subjects. Arch Toxicol. 1980;46:319–320.PubMedCrossRefGoogle Scholar
  33. (33).
    Arancibia A, Corvalan F, Mella F, Concha L. Absorption and disposition kinetics of lithium carbonate following administration of conventional and controlled release formulations. Int J Clin Pharmacol Ther Toxicol. 1986;24:240–245.PubMedGoogle Scholar
  34. (34).
    Allain P, Le Bouil A, Turcant A, Molinier P, Armand P, Andrianiriana F. Pharmacokinetics of low-dose lithium in healthy volunteers. Therapie. 1994;49:321–324.PubMedGoogle Scholar
  35. (35).
    Stwertka A. A Guide to the Elements 2nd Edition. USA: Oxford University Press; 2002.Google Scholar
  36. (36).
    Schmidt M, Hofmann M, Campbell SJ. Magnetic structure of strontium ferrite Sr4Fe4O11. J Phys: Condens Matter. 2003; 15:8691–8701.CrossRefGoogle Scholar
  37. (37).
    Krefting ER, Frentzel K, Tessarek J, Hohling HJ. Strontium, a tracer to study the transport of calcium in mineralizing tissues by electron probe microanalysis. Scanning Microsc. 1993;7: 203–207.PubMedGoogle Scholar
  38. (38).
    Verberckmoes SC, De Broe ME, D’Haese PC. Dosedependent effects of strontium on osteoblast function and mineralization. Kidney Int. 2003;64:534–543.PubMedCrossRefGoogle Scholar
  39. (39).
    Malaise O, Bruyere O, Reginster JY. Strontium ranelate normalizes bone mineral density in osteopenic patients. Aging Clin Exp Res. 2007;19:330–333.PubMedGoogle Scholar
  40. (40).
    Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69:121–129.PubMedCrossRefGoogle Scholar
  41. (41).
    Ozgur S, Sumer H, Kocoglu G. Rickets and soil strontium. Arch Dis Child. 1996;75:524–526.PubMedGoogle Scholar
  42. (42).
    Neufeld EB, Boskey AL. Strontiam alters the complexed acidic phospholipid content of mineralizing tissues. Bone. 1994;15:425–430.PubMedCrossRefGoogle Scholar
  43. (43).
    D’Haese PC, Schrooten I, Goodman WG, Cabrera WE, Lamberts LV, Elseviers MM, et al. Increased bone strontium levels in hemodialysis patients with osteomalacia. Kidney Int. 2000;57:1107–1114.PubMedCrossRefGoogle Scholar
  44. (44).
    Schrooten I, Cabrera W, Goodman WG, Dauwe S, Lamberts LV, Marynissen R, et al. Strontium causes osteomalacia in chronic renal failure rats. Kidney Int. 1998;54:448–456.PubMedCrossRefGoogle Scholar
  45. (45).
    Varo P, Saari E, Paaso A, Koivistoinen P. Strontium in Finnish foods. Int J Vitam Nutr Res. 1982;52:342–350.PubMedGoogle Scholar
  46. (46).
    Warren JM, Spencer H. Metabolic balances of strontium in man. Clin Orthop Relat Res. 1976;117:307–320.PubMedGoogle Scholar
  47. (47).
    Slavin W. Flames, funaces, plasmas. How do we choose? Anal Chem. 1986;58:589A-597A.CrossRefGoogle Scholar
  48. (48).
    Usuda K, Kono K, Dote T, Shimizu H, Tominaga M, Koizumi C, et al. Log-normal distribution of the trace element data results from a mixture of stochastic input and deterministic internal dynamics. Biol Trace Elem Res. 2002;86:45–54.PubMedCrossRefGoogle Scholar
  49. (49).
    Ando M, Tadano M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, et al. Health effects of fluoride pollution caused by coal burning. Sci Total Environ. 2001;271:107–116.PubMedCrossRefGoogle Scholar
  50. (50).
    Kiilunen M, Jarvisalo J, Makitie O, Aitio A. Analysis, storage stability and reference values for urinary chronium and nickel. Int Arch Occup Environ Health. 1987;59:43–50.PubMedCrossRefGoogle Scholar
  51. (51).
    Roggi C, Sabbioni E, Minoia C, Ronchi A, Gatti A, Hansen B, et al. Trace element reference values in tissues from inhabitants of the European Union. IX. Harmonization of statistical treatment: blood cadmium in Italian subjects. Sci Total Environ. 1995;166:235–243.PubMedCrossRefGoogle Scholar
  52. (52).
    Yabu Y, Miyai K, Endo Y, Hata N, Iijima Y, Hayashizaki S, et al. Urinary iodide excretion measured with an iodideselective ion electrode: studies on normal subjects of varying ages and patients with thyroid diseases. Endocrinol Jpn. 1988;35:391–398.PubMedGoogle Scholar
  53. (53).
    Bellander T, Merler E, Ceccarelli F, Boffetta P. Historical exposure to inorganic mercury at the smelter works of Abbadia San Salvatore, Italy. Ann Occup Hyg. 1998;42:81–90.PubMedGoogle Scholar
  54. (54).
    Sabbioni E, Minoia C, Ronchi A, Hansen BG, Pietra R, Balducci C. Trace element reference values in tissues from inhabitants of the European Union. VIII. Thallium in the Italian population. Sci Total Environ. 1994;158:227–236.PubMedCrossRefGoogle Scholar
  55. (55).
    Gil F, Perez ML, Facio A, Villanueva E, Tojo R, Gil A. Dental lead levels in the Galician population. Spain. Sci Total Environ. 1994;156:145–150.CrossRefGoogle Scholar
  56. (56).
    Samanta G, Sharma R, Roychowdhury T, Chakraborti D. Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Sci Total Environ. 2004;326:33–47.PubMedCrossRefGoogle Scholar
  57. (57).
    Usuda K, Kono K, Yoshida Y. Serum boron concentration from inhabitants of an urban area in Japan. Reference value and interval for the health screening of boron exposure. Biol Trace Elem Res. 1997;56:167–178.PubMedCrossRefGoogle Scholar
  58. (58).
    Morgenstern BZ, Milliner DS, Murphy ME, Simmons PS. Moyer TP, Wilson DM, et al. Urinary oxalate and glycolate excretion patterns in the first year of life: a longitudinal study. J Pediatr. 1993;123:248–251.PubMedCrossRefGoogle Scholar
  59. (59).
    Yano T, Nakatani K, Watanabe A, Sawada H, Okumura T, Yamada Y, et al. Utility of measurement of tumor markers for preoperative staging of gastric cancer. Nippon Geka Gakkai Zasshi. 1993;94:977–987.PubMedGoogle Scholar
  60. (60).
    Lehmann FG, Hufnagel H, Lorenz-Meyer H. Fecal intestinal alkaline phosphatase: a parameter for toxic damage of the small intestinal mucosa. Digestion. 1981;21:156–162.PubMedGoogle Scholar
  61. (61).
    Hyodo T, Kumano K, Haga M, Sakai T, Fukuda M, Isami Y, et al. Analysis of urinary red blood cells of healthy individuals by an automated urinary flow cytometer. Nephron. 1997;75:451–457.PubMedGoogle Scholar
  62. (62).
    Yasmineh WG, Chung MY, Caspers JI. Determination of serum catalase activity on a centrifugal analyzer by an NADP/NADPH coupled enzyme reaction system. Clin Biochem. 1992;25:21–27.PubMedCrossRefGoogle Scholar
  63. (63).
    Ruddell WS, Mitchell CJ, Hamilton I, Leek JP, Kelleher J. Clinical value of serum immunoreactive trypsin concentration. Br Med J (Clin Res Ed). 1981;283:1429–1432.CrossRefGoogle Scholar
  64. (64).
    Weber W, Kewitz H. Determination of thiamine in human plasma and its pharmacokinetics. Eur J Clin Pharmacol. 1985;28:213–219.PubMedCrossRefGoogle Scholar
  65. (65).
    Kono K, Yoshida Y, Watanabe M, Watanabe H, Inoue S, Tanioka Y, et al. Serum and urinaryN-acetyl-beta-D-glucosaminidase activity among the inhabitants of a rural area in Japan—the effect of age and hypertension. Bull Osaka Med Coll. 1990;36:27–34.PubMedGoogle Scholar
  66. (66).
    Yonezawa S, Ohno Y, Imai M, Futohashi M. A statistical study on distribution patterns of plasma free amino acids. Rinsho Byori. 1989;37:1373–1378.PubMedGoogle Scholar
  67. (67).
    Blount BC, Valentin-Blasini L, Osterloh JD, Mauldin JP, Pirkle JL. Perchlorate exposure of the US population, 2001–2002. J Expo Sci Environ Epidemiol. 2007;17:400–407.PubMedCrossRefGoogle Scholar
  68. (68).
    Manini P, De Palma G, Andreoli R, Goldoni M, Mutti A. Determination of urinary styrene metabolites in the general Italian population by liquid chromatography-tandem mass spectrometry. Int Arch Occup Environ Health. 2004;77:433–436.PubMedCrossRefGoogle Scholar
  69. (69).
    Paustenbach DJ, Meyer DM, Sheehan PJ, Lau V. An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils. Toxicol Ind Health. 1991;7:159–196.PubMedGoogle Scholar
  70. (70).
    Watanabe T, Nakatsuka H, Ikeda M. Cadmium and lead contents in rice available in various areas of Asia. Sci Total Environ. 1989;80:175–184.PubMedCrossRefGoogle Scholar
  71. (71).
    Favretto LG, Favretto L. Heavy metals at trace level in edible mussels (Mytilus galloprovincialis Lamarck) from the gulf of Trieste. Z Lebensm Unters Forsch. 1984;179:197–200.PubMedCrossRefGoogle Scholar
  72. (72).
    Gordon SM, Callahan PJ, Nishioka MG, Brinkman MC, O’Rourke MK, Lebowitz MD, et al. Residential environmental measurements in the national human exposure assessment survey (NHEXAS) pilot study in Arizona; preliminary results for pesticides and VOCs. J Expo Anal Environ Epidemiol. 1999;9:456–470.PubMedCrossRefGoogle Scholar
  73. (73).
    Harner T, Wideman JL, Jantunen LM, Bidleman TF, Parkhurst WJ. Residues of organochlorine pesticides in Albama soils. Environ Pollut. 1999;106:323–332.PubMedCrossRefGoogle Scholar
  74. (74).
    Djingova R, Ivanova JU, Wagner G, Korhammer S, Markert B. Distribution of lanthanoids, Be, Bi, Ga, Te, Tl, Th and U on the territory of Bulgaria usingPopulus nigra ‘Italica’ as an indicator. Sci Total Environ. 2000;280:85–91.CrossRefGoogle Scholar
  75. (75).
    Cho JH, Hee Min K, Paik NW. Temporal variation of airborne fungi concentrations and related factors in subway stations in Seoul, Korea. Int J Hyg Environ Health. 2006;209:249–255.PubMedCrossRefGoogle Scholar
  76. (76).
    Lange JH, Lange PR, Reinhard TK, Thomulka KW. A study of personal and area airborne asbestos concentrations during asbestos abatement: a statistical evaluation of fibre concentration data. Ann Occup Hyg. 1996;40:449–466.PubMedGoogle Scholar
  77. (77).
    Imbus HR, Cholak J, Miller LH, Sterling T. Boron, cadmium, chromium, and nickel in blood and urine. A survey of American working men. Arch Environ Health. 1963;6:286–295.PubMedGoogle Scholar
  78. (78).
    Abou-Shakra FR, Havercroft JM, Ward NI. Lithium and boron in biological tissues and fluids. Trace Elem Med 1989;6:142–146.Google Scholar
  79. (79).
    Minoia C, Sabbioni E, Apostoli P, Pietra R, Pozzoli L, Gallorini M, et al. Trace element reference values in tissues from inhabitants of the European community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci Total Environ. 1990;95:89–105.PubMedCrossRefGoogle Scholar
  80. (80).
    Dol I, Knochen M, Vieras E. Determination of lithium at ultratrace levels in biological fluids by flame atomic emission spectrometry. Use of first-derivative spectrometry. Analyst. 1992;117:1373–1376.PubMedCrossRefGoogle Scholar
  81. (81).
    Komaromy-Hiller G, Ash KO, Costa R, Howerton K, Comparison of representative ranges based on U.S. patient population and literature reference intervals for urinary trace elements. Clin Chim Acta. 2000;296:71–90.PubMedCrossRefGoogle Scholar
  82. (82).
    Leeuwenkamp OR, van der Vijgh WJ, Husken BC, Lips P, Netelenbos JC. Quantification of strontium in plasma and urine with flameless atomic absorption spectrometry. Clin Chem. 1989;35:1911–1914.PubMedGoogle Scholar
  83. (83).
    Iyengar GV, Bowen HJM, Kollmer WE. The Elemental Composition of Human Tissues and Body Fluids: a Compilation of Values for Adults. Weinheim: Verlag Chemie; 1978.Google Scholar
  84. (84).
    Devirian TA, Volpe VL. The physiological effects of dietary boron. Crit Rev Food Sci Nutr. 2003;43:219–231.PubMedCrossRefGoogle Scholar
  85. (85).
    Yang W, Gao X, Wang B. Boronic acid compounds as potential pharmaceutical agents. Med Res Rev. 2003;23:346–368.PubMedCrossRefGoogle Scholar
  86. (86).
    Giles JJ, Bannigan JG. Teratogenic and developmental effects of lithium. Curr Pharm Des. 2006;12:1531–1541.PubMedCrossRefGoogle Scholar
  87. (87).
    Scrosati B. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells. Chem Rec. 2005;5:286–297.PubMedCrossRefGoogle Scholar
  88. (88).
    Tournis S, Economopoulos D, Lyritis GP. Strontium ranelate: a novel treatment in postmenopausal osteoporosis. Ann N Y Acad Sci. 2006;1092:403–407.PubMedCrossRefGoogle Scholar
  89. (89).
    Cohen-Solal M. Strontium overload and toxicity: impact on renal osteodystrophy. Nephrol Dial Transplant. 2002;17 Suppl 2:30–34.PubMedGoogle Scholar

Copyright information

© Japanese Society of Hygiene 2007

Authors and Affiliations

  • Kan Usuda
    • 1
  • Koichi Kono
    • 1
  • Tomotaro Dote
    • 1
  • Misuzu Watanabe
    • 1
  • Hiroyasu Shimizu
    • 1
  • Yoshimi Tanimoto
    • 1
  • Emi Yamadori
    • 1
  1. 1.Division of Preventive and Social Medicine Department of Hygiene and Public HealthOsaka Medical CollegeTakatsuki City, OsakaJapan

Personalised recommendations