Biologia Plantarum

, Volume 32, Issue 2, pp 104–112 | Cite as

The effect of proline application on the physiology ofraphanus sativus plants grown under salinity stress

  • M. A. Shaddad
Original Paper


Transpiration rate, stomatal frequency, growth, contents of pigments, saccharides, total nitrogen, proteins and some nutritive elements (K, Ca, Mg, P) of radish plants were significantly lowere dwith the rise in salinization levels using NaCl. Spraying radish shoots with proline solution (200 g m-3) counteracted the above adverse effects, especially at low and moderate salinity.


Proline Salinity Stress Transpiration Rate Salinization Level Free Proline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, A. M. Heikal, M. M., Zidan, M. A.: Effects of salinization treatments on growth and some related physiological activities of some leguminous plants. - Can. J. Plant Sci.60: 713–720. 1980.CrossRefGoogle Scholar
  2. Barnett, N. M., Naylor, A. W.: Amino acids and protein metabolism in Bermuda grass during water stress. - Plant Physiol.41: 1222–1230, 1966.PubMedGoogle Scholar
  3. Bar-Nun, N., Poljakoff-Mayber, A.: Salinity stress and the content of proline in root ofPisum sativum andTamarix retragyna. - Ann. Bot. 41: 173–179, 1977.Google Scholar
  4. Bates, L. S., Waldren, R. P., Teare, I. D.: Rapid determination of free proline for water-stress studies. Short communication. - Plant Soil39: 205–207, 1973.CrossRefGoogle Scholar
  5. Bozcuk, S.: Effect of sodium chloride upon growth and transpiration inStatice sp. andPisum sativum L. - Proc. Third Meeting (Izmir): 37–42, 1975.Google Scholar
  6. Fales, F. W.: The assimilation and degradation of carbohydrates of yeast cells. - J. biol. Chem.193:113–118, 1951.PubMedGoogle Scholar
  7. Handa, S., Bressan, R. A., Handa, A. K., Carpita, N. S., Husegawa, P. M.: Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress.-Plant Physiol.73: 834–843, 1983.PubMedGoogle Scholar
  8. Hedge, B. A., Joshi, G. C.: Mineral salt absorption in saline rice variety Kala rata. - Plant Soil41: 421–424, 1974.CrossRefGoogle Scholar
  9. Heikal, M. M., Shaddad, M. A.: Alleviation of osmotic stress on seed germination and seedling growth of cotton, pea and wheat by proline. - Phyton (Aust.)22: 275–287, 1982.Google Scholar
  10. Huang, A. H. S., Cavalieri, A. J.: Proline oxidase and water stress-induced proline accumulation in spinach leaves. - Plant Physiol.63: 531–535, 1979.PubMedGoogle Scholar
  11. Janardan, K. V., Murtay, K., Girira, J., Panchaksharais, S.: Salt tolerance of cotton and potential use of saline water for irrigation. - Curr. Sci.45: 334–336, 1976.Google Scholar
  12. LaHaye, P. A., Epstein, E.: Calcium and salt tolerance by bean plants. - Physiol. Plant.25:213–218, 1971.CrossRefGoogle Scholar
  13. Lowry, C. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. - J. biol. Chem.193: 265–275, 1951.PubMedGoogle Scholar
  14. Meiri, A., Poljakoff-Mayber, A.: Effects of various salinity regions on growth, leaf expansion and transpiration rate of bean plants. - Soil Sci.109: 26–36, 1970.CrossRefGoogle Scholar
  15. Metzner, H., Rau, H. Senger, H.: Untersuchungen zur Synchronisierbarkeit einzelner Pigment-Mangel Mutanten von Chlorella. - Planta65: 186–194, 1965.CrossRefGoogle Scholar
  16. Moore, S., Stein, W. H.: Photometric ninhydrin method for use in the chromatography of amino acids. - J. biol. Chem.176: 367–388, 1948.PubMedGoogle Scholar
  17. Munns, R., Greenway, H., Delane, R., Gibbs, J.: Ion concentration and carbohydrate status of the elongating leaf tissue ofHordeum vulgare growing at high external NaCl. II. Cause of the growth reduction. - J. exp. Bot.33: 574–583, 1982.CrossRefGoogle Scholar
  18. Palfi, G., Juhasz, J.: The theoretical basis and practical application of a new method of selection for determining water deficiency. - Plant Soil34: 503–507, 1971.CrossRefGoogle Scholar
  19. Schwarzenbach, G., Biederman, W.: Komplexone X. Erdalkalikomplexe von 0, 6-Dioxy-azo-Farbstoffen. - Helv. chim. Acta31: 678–687, 1948.CrossRefPubMedGoogle Scholar
  20. Singh, T. N., Aspinall, D., Paleg, L. G.: Stress metabolism 1. Nitrogen metabolism and growth in the barley plant during water stress. - Aust. J. biol. Sci.26: 45–56, 1973.Google Scholar
  21. Stewart, C. R., Lee, J. A.: The role of proline accumulation in halophytes. - Planta120: 279–289, 1974.CrossRefGoogle Scholar
  22. Stewart, C. R., Morris, C. J., Thompson, J. F.: Changes in amino acid content of excised leaves during incubation. II-Role of sugar in the accumulation of proline in wilted leaves. - Planta120: 279–289, 1974.CrossRefGoogle Scholar
  23. Thakur, P. S., Rai, V. K.: Exogenously supplied amino acids and water deficits in Zea mays cultivars. - Biol. plant.27: 458–461, 1985.CrossRefGoogle Scholar
  24. Watson, D. J., Watson, M. A.: Studies in potatoes agronomy. 1. Effect of variety seed size and spacing on growth, development and yield. - J. agr. Sci.66: 241–249, 1933.Google Scholar
  25. Williams, V., Twine, S.: Flame photometric method for sodium, potassium and calcium. - In:Paech, K., Tracey, M. V. (ed.): Modern Methods of Plant Analysis. Vol. V. Pp. 3–5. Springer-Verlag, Berlin 1960.Google Scholar
  26. Woods, J. T., Mellon, M. G.: Chlorostannous-reduced molybdophosphoric blue color in sulfuric acid system. - In:Jackson, M. L. (ed.): Soil Chemical Analysis. Pp. 141–144. Prentice-Hall International, London 1941.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • M. A. Shaddad
    • 1
  1. 1.Botany Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations