Biologia Plantarum

, 32:81 | Cite as

Oxidized and reduced glutathione, ascorbate and glutathione reductase inmatricaria recutita L. Callus cultures

  • D. Podhradský
  • Eva Ĉellárová
  • R. HonĈariv
Original Paper


In the long-term cultivated callus cultures ofMatricaria recutita L. the identical concentration changes in the biosynthesis of glutathione, glutamate, aspartate, total thiols and proteins were detected within the subculture. The level of oxidized glutathione during the growth of callus culture was low with the highest value 10.66 nmol g-1 on the 13th day of subculture. The ratio GSH/GSSG which significantly influences the redox processes in a cell, and the activity of glutathione reductase increased from the 8th day. Ascorbate formation was detected on the 17th day, although no relation between the ascorbate synthesis and the concentration of glutathione and glutathione reductase was found.


Glutathione Glutathione Reductase GSSG Callus Culture Turf Grass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bergmann, L., Rennenberg, H.: Efflux und Produktion von Glutathion in Suspensionskulturen von Nicotianatabacum. — Z. Pflanzephysiol.88:175–185, 1978.Google Scholar
  2. Fahey, R. C, Di Stefano, D. L., Meier, D. L., Bryan, R. N.: Role of hydratation state and thiol-disulfide status in the control of thermal stability and protein synthesis in wheat embryo. — Plant Physiol.65:1062–1066, 1980.PubMedGoogle Scholar
  3. Gamborg, O. L., Miller, R. A., Ojima, K.: Nutrient requirements in suspension culture of soybean root cells. — Exp. Cell Res.50: 151–158, 1968.PubMedCrossRefGoogle Scholar
  4. Haluwell, B.: Chloroplast Metabolism: The Structure and Function of Chloroplast in Green Leaf Cells. — Clarendon Press, Oxford 1984.Google Scholar
  5. Haluwell, B., Foyer, C. H.: Properties and physiological function of glutathione reductase purified from spinach leaves by affinity chromatography. — Planta139: 9–17, 1978.CrossRefGoogle Scholar
  6. Jablonski, P. P., Anderson, J. W.: Light dependent reduction of dehydroascorbate by ruptured pea chloroplast. — Plant Physiol.67: 1239–1244, 1981.PubMedCrossRefGoogle Scholar
  7. Kosower, N. S., Kosower, E. M.: Functional aspects of glutathione. — In:Arias, J. M., Jakoby, W. B. (ed.): Glutathione: Metabolism and Function. Pp. 159–174. Raven Press, New York 1976.Google Scholar
  8. Lamourex, G. L.,Rusness, D. G.: Catabolism of glutathione conjugates of pesticides in higher plants. — In:Rosen, J. D.,Magee, P. S.,Casida, J. E. (ed): Sulphur and Pesticide Action and Metabolism. Pp. 132–164. ACS Symp. Ser. 152, 1981.Google Scholar
  9. Lamourex, G. L., Rusness, D. G.: Coenzymes and Cofactors. — J. Wiley, New York 1987.Google Scholar
  10. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, J.: Protein measurement with the Folin phenol reagent. — J. biol. Chem.193: 265–275, 1951.PubMedGoogle Scholar
  11. Murashige, T., Skoog, F.: A revised medium for rapid growth and bloassays with tobacco tissue cultures. -Physiol. Plant.15: 473–497, 1962.CrossRefGoogle Scholar
  12. Reed, J., Babson, J. R., Beatfy, P. W., Brodie, A. E., Ellis, W. W., Potfer, W.: High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulphide, and related thiols and disulphides. - Anal. Biochem.106: 55–62, 1980.PubMedCrossRefGoogle Scholar
  13. Sedlák, J., Lidsay, R.: Estimation of total protein-bound and nonprotein sulphydryl groups in tissue with Ellman’s reagent. - Anal. Biochem.25: 192–205, 1968.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • D. Podhradský
    • 1
  • Eva Ĉellárová
    • 1
  • R. HonĈariv
    • 1
  1. 1.Department of Special Biology, Faculty of ScienceP. J. Ŝafárik UniversityKoŝiceCzechoslovakia

Personalised recommendations