Science in China Series A: Mathematics

, Volume 43, Issue 5, pp 552–560 | Cite as

Analytic perturbation solutions to the Venusian orbiter due to the nonspherical gravitational potential

  • Lin Liu
  • C. K. Shum


The analytic perturbation solutions to the motions of a planetary orbiter given in this paper are effective for 0e1, where e is the orbital eccentricity of the orbiter. In the solution, it is assumed that the rotation of the central body is slow, and its astronomical background is clear. Examples for such planets in the solar system are Venus and Mercury. The perturbation solution is tested numerically on two Venusian orbiters with eccentric orbits, PVO and Magellan, and found to be effective.


slow rotation central body Venusian orbiter nonspherical gravitational potential analytic perturbation solutions. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaula, W. M., Theory of Satellite Geodesy, Chapter 3, Waltham: Blaisdell Publ. Co., 1966.Google Scholar
  2. 2.
    Giacaglia, G. E. 0., A note on the inclination functions of satellite theory, Celest. Mech., 1976, 13: 503.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Liu, L., Orbital Dynamics for Artificial Earth’s Satellite (in Chinese), Chapter 5, Beijing: Higher Education Press, 1992.Google Scholar
  4. 4.
    Brouwer, D., Clemence, G. M., Methods of Celestial Mechanics, Chapter 11, New York-London: Academic Press, 1961.Google Scholar
  5. 5.
    Fehlberg, E., NASA TR R-287, 1968.Google Scholar
  6. 6.
    Nerem, R., Bills, McNamee, J., A higher resolution gravity model for Venus, 1GVM-1, Geophys. Res. Lett., 1993, 20(7): 599.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Lin Liu
    • 1
  • C. K. Shum
    • 2
  1. 1.Department of AstronomyNanjing UniversityChina
  2. 2.Center for Space ResearchThe Texas University at AustinChina

Personalised recommendations