Journal of Molecular Neuroscience

, Volume 2, Issue 1, pp 45–52 | Cite as

Effects of membrane fluidity on [3H]TCP binding to PCP receptors

  • Frank R. DePietro
  • James C. Byrd


Phencyclidine (PCP) binds with high affinity to the ion channel associated with the NMDA receptor. The binding of the PCP receptor-specific ligand TCP is greatly reduced at temperatures between 2°C and 6°C, at which the plasma membrane is in a rigid state. However, membrane rigidity alone does not appear to cause the reduced TCP binding, since the membrane fluidizing agent A2C did not increase TCP binding at 4°C; instead, it decreased binding at 21°C. This inhibitory effect of A2C on TCP binding was dose dependent and was highly correlated with A2C-induced increases in membrane fluidity. The IC50 of A2C inhibition was 8.9 mM, with a pseudo-Hill coefficient of −0.24. Scatchard analysis demonstrated that this effect was the result of an increase in the apparentK d of [3H]TCP for the PCP receptor, with no effect on theB max. These results suggest that the function of the NMDA-PCP receptor complex is impaired by increases in membrane fluidity. These findings may be pharmacologically relevant in understanding the mechanism of action of such agents as general anesthetics and ethanol, which cause increases in plasma membrane fluidity.


NMDA NMDA Receptor Membrane Fluidity Excitatory Amino Acid Phencyclidine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aniline, O., Pitts, F.N. (1982). Phencyclidine (PCP): A review and perspectives. CRC Crit. Rev. Toxicol. 10:145–177CrossRefGoogle Scholar
  2. Anis, N.A., Berry, S.C., Burton, N.R., Lodge, D. (1983). The dissociative anesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones byN-methyl-aspartate. Br. J. Pharmacol. 79: 565–575PubMedGoogle Scholar
  3. Ascher, P., Nowak, L. (1986). Calcium permeability of the channels activated byN-methyl-d-aspartate in isolated mouse central neurones. J. Physiol. (London) 377:35PGoogle Scholar
  4. Bartschat, D.K., Blaustein, M.P. (1988). Psychotomimetic sigma-ligands, dexoxadrol and phencyclidine block the same presynaptic potassium channel in rat brain. J. Physiol. (London) 403: 341–353Google Scholar
  5. Byrd, J.C., Bykov, V., Rothman, R.B. (1987). Chronic haloperidol treatment up-regulates PCP receptors in rat brain. Eur. J. Pharmacol. 140: 121–122PubMedCrossRefGoogle Scholar
  6. Choi, D.W. (1988). Glutamate toxicity and diseases of the central nervous system. Neuron 1: 623–634PubMedCrossRefGoogle Scholar
  7. Clouet, D.H. (1986). Phencyclidine: An update. NIDA Res. Monogr. 64: 266 ppGoogle Scholar
  8. Collingridge, G.L., Kehl, S.J., McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (London) 334: 33–46Google Scholar
  9. Cotman, C.W., Iversen, L.L. (eds). Excitatory amino acids in the brain—focus on NMDA receptors. Trends Neurosci. 10(7): 263–265Google Scholar
  10. DePietro, F., Byrd, J.C. (1990). Effects of membrane fluidity on [3H]TCP binding. FASEB J 4(3): A602Google Scholar
  11. Domino, E.P., Kamenka, J.M. (1988). Sigma and Phencyclidine-like Compounds as Molecular Probes NPP Books, Ann Arbor, MIGoogle Scholar
  12. Duchen, M.R., Burton, N.R., Biscoe, T.J. (1985). An intracellular study of the interactions ofN-methyl-d-aspartate with ketamine in the mouse hippocampal slice. Brain Res. 342: 149–153PubMedCrossRefGoogle Scholar
  13. Engberg, I., Flatman, J.A., Lambert, J.D.C. (1979). The actions of excitatory amino acids on motoneurons in the feline spinal cord. J. Physiol. 288: 227–260PubMedGoogle Scholar
  14. Flatman, J.A., Schwindt, P.C., Crill, W.E., Stafstrom, C.E. (1983) Multiple actions ofN-methyl-d-aspartate on cat neocortical neurons in vitro. Brain Res. 266: 169–173PubMedCrossRefGoogle Scholar
  15. Foster, A.C., Fagg, G.E. (1984). Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7: 103–164CrossRefGoogle Scholar
  16. Furchgott, R.F. (1955). The pharmacology of vascular smooth muscle. Pharmacol. Rev. 7: 183–265PubMedGoogle Scholar
  17. Gundlach, A.L., Largent, B.L., Snyder, S.H. (1985). Phencyclidine and Sigma opiate receptors in brain: Biochemical and autoradiographic differentiation. Eur. J. Pharmacol. 113: 465–466PubMedCrossRefGoogle Scholar
  18. Gundlach, A.L., Largent, B.L., Snyder, S.H. (1986). Autoradiographic localization of Sigma receptor binding sites in guinea pig and rat central nervous system with (+)[3H]-3(3-hydroxyphenyl)-N-(1-propyl)piperidine. J. Neurosci. 6: 1757–1770PubMedGoogle Scholar
  19. Harrison, N.L., Simmonds, M.A. (1985). Quantitative studies on some antagonists ofN-methyl-d-aspartate in slices of rat cerebral cortex. Br. J. Pharmacol. 84: 381–391PubMedGoogle Scholar
  20. Hoffman, P.L., Rabe, C.S., Moses, F., Tabakoff, B. (1989).N-Methyl-d-aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. J. Neurochem. 52: 1937–1940PubMedCrossRefGoogle Scholar
  21. Honey, C.R., Miljkovic, Z., MacDonald, J.F. (1985). Ketamine and phencyclidine cause a voltage-dependent block of responses tol-aspartic acid. Neurosci. Lett. 61: 135–139PubMedCrossRefGoogle Scholar
  22. Hunt, W.A. (1985). Alcohol and Biological Membranes. Guilford Press, New York, 214 ppGoogle Scholar
  23. Johnson, J.W., Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531PubMedCrossRefGoogle Scholar
  24. Kleinschmidt, A., Bear, M.F., Singer, W. (1987). Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238: 355–358PubMedCrossRefGoogle Scholar
  25. Kloog, Y., Haring, R., Sokolovsky, M. (1988). Kinetic characterization of the phencyclidine-N-methyl-d-aspartate receptor interaction: Evidence for a steric blockade of the channel. Biochemistry 27: 843–848PubMedCrossRefGoogle Scholar
  26. Kosower, E.M., Kosower, N.S., Faltin, Z., Diver, A., Saltoun, G., Frensdorff, A. (1974). Membrane mobility agents: A new class of biologically active molecules. Biochim. Biophys. Acta 363: 261–266PubMedCrossRefGoogle Scholar
  27. Largent, B.L., Gundlach, A.L., Snyder, S.H. (1986). Pharmacological and autoradiographic discrimination of Sigma and phencyclidine receptor binding sites in brain with (+)[3H]SKF 10,047, (+)[3H]3-PPP and [3H]TCP. J. Pharmacol. Exp. Ther. 238: 739–745PubMedGoogle Scholar
  28. Lakowicz, J.R.,(1983). Principles of Fluorescence Spectroscopy. Plenum Press, New YorkGoogle Scholar
  29. Lakowicz, J.R., Prendergast, F.G. (1978). Quantitation of hindered rotations of diphenylhexatriene in lipid bilayers by differential polarized phase fluorometry. Science 200: 1399–1407PubMedCrossRefGoogle Scholar
  30. Lakowicz, J.R., Prendergast, F.G., Hogen, D. (1979). Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers: Quantitation of hindered depolarizing rotations. Biochemistry 18: 508–519PubMedCrossRefGoogle Scholar
  31. Lima-Landmand, M.R., Albuquerque, E.X. (1989). Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells. FEBS Lett. 247: 61–67CrossRefGoogle Scholar
  32. Lincoln, J., Coopersmith, R., Harris, E.W., Cotman, C.W., Leon, M. (1988). NMDA receptor activation and early olfactory learning. Dev. Brain Res. 39: 309–312CrossRefGoogle Scholar
  33. Loo, P., Braunwalder, A., Lehmann, J., Williams, M. (1986). Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur. J. Pharmacol. 123: 467–468PubMedCrossRefGoogle Scholar
  34. Loo, P.S., Braunwalder, A.F., Lehmann, J., Williams, M., Sills, M.A. (1988). Interaction ofl-glutamate and magnesium with phencyclidine recognition sites in rat brain: Evidence for multiple affinity states of the phencyclidine/N-methyl-d-aspartate receptor complex. Mol. Pharmacol. 32: 820–830Google Scholar
  35. Lovinger, D.M., White, G., Weight, F.F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724PubMedCrossRefGoogle Scholar
  36. MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J., Barker, J.L. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature (London) 321:519–522CrossRefGoogle Scholar
  37. MacDonald, J.F., Porietis, A.V., Wojtowicz, J.M. (1982).l-Aspartic acid induces a region of negative slope conductance in the current-voltage relationship of cultured spinal cord neurons. Brain Res. 237:248–253PubMedCrossRefGoogle Scholar
  38. Maragos, W.F., Chu, D.C.M., Greenamyre, J.T., Penney, J.B., Young, A.B. (1986). High correlation between the localization of [3H]TCP binding and NMDA receptors. Eur. J. Pharmacol. 123:173–174PubMedCrossRefGoogle Scholar
  39. Maragos, W.F., Penney, J.B., Young, A.B. (1988). Anatomic correlation of NMDA and [3H]TCP-labeled receptors in rat brain. J. Neurosci. 8(2):493–501PubMedGoogle Scholar
  40. Martin, D., Lodge, D. (1985). Ketamine acts as a noncompetitiveN-methyl-d-aspartate antagonist on frog spinal cord in vitro. Neuropharmacology 24:999–1003PubMedCrossRefGoogle Scholar
  41. Mayer, M.L., Westbrook, G.L. (1987). The physiology of excitatory amino acids in the vertebrate nervous system. Prog. Neurobiol. (Oxford) 28:197–276CrossRefGoogle Scholar
  42. Munson, P.J., Rodbard, D. (1980). LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239PubMedCrossRefGoogle Scholar
  43. Murphy, S.N., Thayer, S.A., Miller, R.J. (1987). The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J. Neurosci. 7:4145–4158PubMedGoogle Scholar
  44. Olney, J.W. (1989). Excitatory amino acid and neuropsychiatric disorders. Biol. Psychiatry 26:505–525PubMedCrossRefGoogle Scholar
  45. Paleos, G.A., Yang, Z.W., Byrd, J.C. (1990). Ontogeny of PCP and Sigma receptors in rat brain. Dev. Brain Res. 51(2):147–152CrossRefGoogle Scholar
  46. Reynolds, I.J., Miller, R.J. (1988). Multiple sites for the regulation of theN-methyl-d-aspartate receptor. Mol. Pharmacol. 33:581–584PubMedGoogle Scholar
  47. Reynolds, I.J., Murphy, S.N., Miller, R.J. (1987).3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc. Natl. Acad. Sci. U.S.A. 84:7744–7748PubMedCrossRefGoogle Scholar
  48. Siebke, H., Breivik, H., Rod, T., Lind, B. (1975). Survival after 40 minutes' submersion without cerebral sequelae. Lancet 1:1275–1277PubMedCrossRefGoogle Scholar
  49. Snell, L.D., Morter, R.S., Johnson, K.M. (1987). Glycine potentiatesN-methyl-d-aspartate-induced [3H]TCP binding to rat cortical membranes. Neurosci. Lett. 83:313–317PubMedCrossRefGoogle Scholar
  50. Sonders, M.S., Keana, J.F.W., Weber, E. (1988). Phencyclidine and psychotomimetic opiates: Recent insights into their biochemical and physiological sites of action. Trends Neurosci. 11(1):37–40PubMedCrossRefGoogle Scholar
  51. Vignon, J., Chicheportiche, R., Chicheportiche, M., Kamenka, J.M., Geneste, P., Lazdunski, M. (1983). [3H]TCP: A new tool with high affinity for the PCP receptor in rat brain. Brain Res. 280:194–197PubMedCrossRefGoogle Scholar
  52. Vincent, J.P., Vignon, J., Kartalovski, B., Geneste, P., Kamenka, J.M., Lazdunski, M. (1979). Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes. Proc. Natl. Acad. Sci. U.S.A. 76:4678–4682PubMedCrossRefGoogle Scholar
  53. Weissmann, G., Claiborne, R. (1975). Cell Membranes: Biochemistry, Cell Biology, and Pathology. H.P. Publishing Company, New YorkGoogle Scholar
  54. Wong, E.H.F., Knight, A.R., Ransom, R. (1987). Glycine modulates [3H]MK-801 binding to the NMDA receptor in rat brain. Eur. J. Pharmacol. 142:487–488PubMedCrossRefGoogle Scholar
  55. Wroblewski, J.T., Nicoletti, F., Fadda, E., Costa, E. (1987). Phencyclidine is a negative allosteric modulator of signal transduction at two subclasses of excitatory amino acid receptors. Proc. Natl. Acad. Sci. U.S.A. 84:5068–5072PubMedCrossRefGoogle Scholar
  56. Yang, Z.W., Paleos, G.A., Byrd, J.C. (1988). PCP and Sigma receptors: Differential effects of cations and pH on ligand affinity. Soc. Neurosci. Abst. 14(1):485Google Scholar
  57. Zubenko, G. (1986). Hippocampal membrane alteration in Alzheimer's disease. Brain Res. 385:115–121PubMedCrossRefGoogle Scholar
  58. Zubenko, G., Cohen, B.M. (1985). Effects of phenothiazine treatment on the physical properties of platelet membranes from psychiatric patients. Biol. Psychiatry 20:384–396PubMedCrossRefGoogle Scholar
  59. Zukin, S.R., Zukin, R.S. (1979). Specific [3H]phencyclidine binding in rat central nervous system. Proc. Natl. Acad. Sci. U.S.A. 76:5372–5376PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser 1990

Authors and Affiliations

  • Frank R. DePietro
    • 1
  • James C. Byrd
    • 1
  1. 1.Developmental Neurobiology Program, Center for Neuroscience, Department of PsychiatryUniversity of PittsburghPittsburghUSA

Personalised recommendations