Advertisement

Journal of Molecular Neuroscience

, Volume 1, Issue 2, pp 129–136 | Cite as

The role of mitochondrial DNA in Huntington’s disease

  • Carol C. Irwin
  • Nancy S. Wexler
  • Anne B. Young
  • Laurie J. Ozelius
  • John B. Penney
  • Ira Shoulson
  • S. Robert Snodgrass
  • Maria A. Ramos-Arroyo
  • Juan Sanchez-Ramos
  • Graciela K. Penchaszadeh
  • Ernesto Bonilla
  • P. Michael Conneally
  • James F. Gusella
Article

Abstract

Huntington’s disease is generally considered to be a late-onset neurodegenerative disorder, which follows a protracted course of deteriorating motor control and cognitive impairment. However, in a minority of cases, the onset of symptoms occurs early in life. A preponderance of the juvenile-onset HD victims have inherited the genetic defect from their fathers. This variation in age of onset, based on the sex of the affected parent, has suggested that maternally inherited genes may influence expression of the disorder. We describe a portion of a large Venezuelan HD pedigree in which both the mother and father of three juvenile-onset HD patients share a common maternal lineage. Scanning of mtDNA from members of this family with 43 restriction endonucleases failed to reveal any differences in the mitochondrial genotype that could account for the difference in age of onset between the affected father and his progeny. Members of a related family with an affected father but no juvenile-onset progeny also appeared to share the same mitochondrial genotype. In addition, the mitochondrial gene products from lymphoblast cell lines of these family members were analyzed on polyacrylamide gels after incubation of cells with [35S]methionine, but no detectable alterations were seen. Taken together, these data suggest that the maternally inherited mitochondrial genome does not play a crucial role in determining in age of onset in HD.

Keywords

Maternal Lineage Mitochondrial Myopathy Lymphoblast Cell Line NciI Mitochondrial Genotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., Bankier, A.T., Barrell, B.G., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature 290:457–465.PubMedCrossRefGoogle Scholar
  2. Bird, E.D., Caro, A.J., Pilling, J.B. (1974). A sex related factor in the inheritance of Huntington’s chorea. Ann. Hum. Genet. 37:255–260.PubMedCrossRefGoogle Scholar
  3. Boehnke, M., Conneally, P.M., Lange, K. (1983). Two models for a maternal factor in the inheritance of Huntington disease. Am. J. Hum. Genet. 35:845–860.PubMedGoogle Scholar
  4. Bogenhagen, D., Clayton, D.A. (1974). The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. J. Biol. Chem. 249:7991–7995.PubMedGoogle Scholar
  5. Brennan, W.A., Bird, E.D., Aprille, J.R. (1985). Regional mitochondrial respiratory activity in Huntington’s disease brain. J. Neurochem. 44:1948–1950.PubMedCrossRefGoogle Scholar
  6. Cann, R.L., Brown, W.M., Wilson, A.C. (1984). Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106:479–499.PubMedGoogle Scholar
  7. Cann, R.L., Stoneking, M., Wilson, A.C. (1987). Mitochondrial DNA and human evolution. Nature 325:31–36.PubMedCrossRefGoogle Scholar
  8. Case, J.T., Wallace, D.C. (1981). Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts. Somat. Cell Genet. 7:103–108.PubMedCrossRefGoogle Scholar
  9. Ching, E., Attardi, G. (1982). High-resolution electrophoretic fractionation and partial characterization of the mitochondrial translation products from HeLa cells. Biochemistry 21:3188–3195.PubMedCrossRefGoogle Scholar
  10. Chomyn, A., Mariottini, P., Gonzalez-Cadavid, N., et al. (1983). Identification of the polypeptides encoded in the ATPase 6 gene and in the unassigned reading frames 1 and 3 of human mtDNA. Proc. Natl. Acad. Sci. U.S.A. 80:5535–5539.PubMedCrossRefGoogle Scholar
  11. Chomyn, A., Mariottini, P., Cleeter, M.W.J., et al. (1985). Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314:592–597.PubMedCrossRefGoogle Scholar
  12. Feinberg, A.P., Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266–267.Google Scholar
  13. Fischer, S.G., Lerman, L.S. (1983). DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proc. Natl. Acad. Sci. U.S.A. 80:1579–1583.PubMedCrossRefGoogle Scholar
  14. Giles, R.E., Blanc, H., Cann, H.M., Wallace, D.C. (1980). Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 77:6715–6719.PubMedCrossRefGoogle Scholar
  15. Gilliam, T.C., Tanzi, R.E., Haines, J.L., et al. (1987). Localization of the Huntington’s disease gene to a small segment of chromosome 4 flanked by D4S10 and the telomere. Cell 50:565–571.PubMedCrossRefGoogle Scholar
  16. Gusella, J.F., Wexler, N.S., Conneally, P.M., et al. (1983). A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238.PubMedCrossRefGoogle Scholar
  17. Gusella, J.F., Tanzi, R.E., Anderson, M.A., et al. (1984). DNA markers for nervous system diseases. Science 225:1320–1326.PubMedCrossRefGoogle Scholar
  18. Hall, J.G., Te-Juatco, L. (1983). Association between age of onset and parental inheritance in Huntington chorea. Am. J. Med. Genet. 16:289–290.PubMedCrossRefGoogle Scholar
  19. Hauswirth, W.W., Laipis, P.J. (1982). Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl. Acad. Sci. U.S.A. 79:4686–4690.PubMedCrossRefGoogle Scholar
  20. Irwin, C.C. (1985). Comparison of protein systhesis in mitochondria, synaptosomes, and intact brain cells. J. Neurochem. 44:433–438.PubMedCrossRefGoogle Scholar
  21. Johnson, M.J., Wallace, D.C., Ferris, S.D., Rattazzi, M.C., Cavalli-Sforza, L.L. (1983). Radiation of human mitochondria DNA types analyzed by restriction endonuclease cleavage patterns. J. Mol. Evol. 19:255–271.PubMedCrossRefGoogle Scholar
  22. Mariottini, P., Chomyn, A., Riley, M., Cottrell, B., Doolittle, R.F., Attardi, G. (1986). Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L, and 5 of human mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 83:1563–1567.PubMedCrossRefGoogle Scholar
  23. Martin, J.B., Gusella, J.F. (1986). Huntington’s disease: Pathogenesis and management. N. Engl. J. Med. 315:1267–1276.PubMedGoogle Scholar
  24. Merritt, A.D., Conneally, P.M., Rahman, N.F., Drew, A.L. (1969). Juvenile Huntington’s chorea. Progress in Neurogenetics. A. Barbeau, J.R. Brunette, (eds). Excerpta Medica, Amsterdam, pp 645–650.Google Scholar
  25. Monnat, R.J., Loeb, L.A. (1985). Nucleotide sequence preservation of human mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 82:2895–2899.PubMedCrossRefGoogle Scholar
  26. Myers, R.J., Madden, J.J., Teague, J.L., Falek, A. (1982). Factors related to onset age of Huntington disease. Am. J. Med. Genet. 34:481–488.Google Scholar
  27. Myers, R.M., Goldman, D., Bird, et al. (1983). Maternal transmission in Huntington’s disease. Lancet i:208–210.CrossRefGoogle Scholar
  28. Myers, R.M., Cupples, L.A., Schoenfeld, M., D’Agostino, R.B., Terrin, N.C., Goldmakher, N., Wolf, P.A. (1985). Maternal factors in onset of Huntington disease. Am. J. Hum. Genet. 37:511–523.PubMedGoogle Scholar
  29. Penney, J.B., Young, A.B., Shoulson, I., Starosta-Rubinstein, S., Snodgrass, S.R., Ramos-Arroyo, M.A., Gomez, F., Sanchez-Ramos, J., Quiroz, I., Marsol, N., Moreno, H., Bonilla, E., Penchaszadeh, G.K., Wexler, N.S. (1988). HD in Venezuela: 7 years of follow-up on at-risk and symptomatic individuals. Neurology. 38(Suppl. 1):358–359.Google Scholar
  30. Potter, S.S., Newbold, J.E., Hutchison, C.A., Edgell, M.H. (1975). Specific cleavage analysis of mammalian mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 72:4496–4500.PubMedCrossRefGoogle Scholar
  31. Reik, W., Collick, A., Norris, M.L., Barton, S.C., Surani, M.A. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328:248–251.PubMedCrossRefGoogle Scholar
  32. Sapienza, C., Peterson, A.C., Rossant, J., Balling, R. (1987). Degree of methylation of transgenes dependent on gamete of origin. Nature 328:251–254.PubMedCrossRefGoogle Scholar
  33. Went, L.N., Vegter-Van der Vlis, M., Bruyn, G.W. (1984). Parental transmission in Huntington’s disease. Lancet i:1100–1102.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Carol C. Irwin
    • 1
  • Nancy S. Wexler
    • 2
    • 3
  • Anne B. Young
    • 4
  • Laurie J. Ozelius
    • 1
  • John B. Penney
    • 4
  • Ira Shoulson
    • 5
  • S. Robert Snodgrass
    • 6
  • Maria A. Ramos-Arroyo
    • 7
  • Juan Sanchez-Ramos
    • 8
  • Graciela K. Penchaszadeh
    • 2
  • Ernesto Bonilla
    • 9
  • P. Michael Conneally
    • 10
  • James F. Gusella
    • 1
  1. 1.Neurogenetics Laboratory, Massachusetts General Hospital, Department of GeneticsHarvard Medical SchoolBostonUSA
  2. 2.Hereditary Disease FoundationSanta Monica
  3. 3.Departments of Neurology and PsychiatryColumbia UniversityNew York
  4. 4.Department of NeurologyUniversity of MichiganAnn Arbor
  5. 5.Department of Neurology and PharmacologyUniversity of RochesterRochester
  6. 6.Department of NeurologyUniversity of Southern CaliforniaLos Angeles
  7. 7.Servicio de GeneticaHospital Virgen DelcaminoPamplona, NavarraSpain
  8. 8.Department of NeurologyUniversity of MiamiMiami
  9. 9.Department of BiochemistryUniversidad del ZuliaMaracaiboVenezuela
  10. 10.Department of Medical GeneticsIndiana UniversityIndianapolis

Personalised recommendations