Multisplitting preconditioners for a symmetric positive definite matrix



We study convergence of multisplitting method associated with a block diagonal conformable multisplitting for solving a linear system whose coefficient matrix is a symmetric positive definite matrix which is not an H-matrix. Next, we study the validity ofm-step multisplitting polynomial preconditioners which will be used in the preconditioned conjugate gradient method.

AMS Mathematics Subject Classification

65F10 65F15 

Key word and phrases

Multisplitting polynomial preconditioner symmetric positive definite matrix block diagonal conformable multisplitting preconditioned conjugate gradient method 


  1. 1.
    R. Bru, C. Corral, A. Martinez and J. Mas,Multisplitting preconditioners based on incomplete Choleski factorizations, SIAM J. Matrix Anal. Appl. 16 (1995), 1210–1222.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K. Fan,Topological proofs of certain theorems on matrices with nonnegative elements, Monatshefte für Mathematik 62 (1958), 219–237.MATHCrossRefGoogle Scholar
  3. 3.
    A. Frommer and G. Mayer,Convergence of relaxed parallel multisplitting methods, Linear Algebra Appl. 119 (1989), 141–152.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M.R. Hestenes and E.L. Stiefel,Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand. 49 (1952), 409–436.MATHMathSciNetGoogle Scholar
  5. 5.
    O. Johnson, C. Micchelli, and G. Paul,Polynomial preconditioners for conjugate gradient calculations, SIAM J. Numer. Anal., 20 (1983), 362–376.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    T.A. Manteuffel,An incomplete factorization technique for positive definite linear systems, Math. Comput. 34 (1980), 473–497.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J.A. Meijerink and H.A. van der Vorst,An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput. 31 (1977), 148–162.MATHCrossRefGoogle Scholar
  8. 8.
    A. Messaoudi,On the stability of the incomplete LU factorizations and characterizations of H-matrices, Numer. Math. 69 (1995), 321–331.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Neumann and R.J. Plemmons,Convergence of parallel multisplitting methods for M-matrices, Linear Algebra Appl. 88–89 (1987), 559–574.CrossRefMathSciNetGoogle Scholar
  10. 10.
    D.P. O’Leary and R.E. White,Multisplitting s of matrices and parallel solution of linear systems, SIAM J. Algebraic Discrete Meth. 6 (1985), 630–640.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    D.B. Szyld and M.T. Jones,Two-stage and multisplitting methods for the parallel solution of linear systems, SIAM J. Matrix Anal. Appl. 13 (1992), 671–679.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R.E. White,Multisplitting with different weighting schemes, SIAM J. Matrix Anal. Appl. 10 (1989), 481–493.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R.E. White,Multisplitting of a symmetric positive definite matrix, SIAM J. Matrix Anal. Appl. 11 (1990), 69–82.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J.H. Yun,Performance of ILU factorization preconditioners based on multisplittings, Numer. Math. 95 (2003), 761–779.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    J.H. Yun and S.W. Kim,Convergence of two-stage iterative methods using incomplete factorization, J. Comput. Appl. Math. 166 (2004), 565–580.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J.H. Yun, S. Oh, and E.H. Kim,Convergence of multisplitting method for a symmetric positive definite matrix, J. Appl. Math. & Computing 18 (2005), 59–72.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2006

Authors and Affiliations

  1. 1.Department of Mathematics, Institute for Basic Sciences & College of Natural SciencesChungbuk National UniversityCheongjuKorea
  2. 2.Department of Mathematics, College of Natural SciencesChungbuk National UniversityCheongjuKorea
  3. 3.Department of MathematicsChungnam National UniversityDaejeonKorea

Personalised recommendations