The reverse order law for theW-weighted Drazin inverse of multiple matrices product



By using the rank methods of matrix, a necessary and sufficient condition is established for reverse order law
$$\begin{gathered} WA_{d,W} W = (W_n (A_n )_{d,W_n } W_n )(W_{n - 1} (A_{n - 1} )_{d,W_{n - 1} } W_{n - 1} ) \hfill \\ ... (W_1 (A_1 )_{d,W_1 } W_1 ) \hfill \\ \end{gathered} $$
to hold for the W-weighted Drazin inverses, whereA =A 1 A 2 … A n andW =W n W n-1W 1. This result is the extension of the result proposed by [Linear Algebra Appl., 348(2002)265-272] and the result proposed by [J. Math. Research and Exposition. 19(1999)355-358].

AMS Mathematics Subject Classifications


Key words and phrases

Moore-Penrose inverse Drazin inverse weighted Drazin inverse index of a matrix reverse order law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ben-Israel and T. N. E. Greville,Generalized Inverses: Thoery and Applications, Second Edition, Springer, New York, 2003.Google Scholar
  2. 2.
    S. L. Campbell and C. D. Meyer JR.,Generalized Inverse of Linear Transformations, Pitman, London, 1979, Dover, New York, 1991.Google Scholar
  3. 3.
    R. E. Cline and T. N. E. Greville,A Drazin inverse for rectangular matrices, Linear Algebra Appl.43 (1980), 53–62.CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. R. de Pierro and M. wei,Reverse order law for reflexive generalized inverse of products of matrices, Linear Algebra Appl.277 (1998), 299–311.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. C. Gouvreia and R. Puystiens,About the group inverse and Moore-Penrose inverse of a product, Linear Algebra Appl.150 (1991), 361–369.CrossRefMathSciNetGoogle Scholar
  6. 6.
    T. N. E. Greville,Note on the generalized inverse of a matrix product, SIAM Rev.8 (1966), 518–521.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. E. Hartwig,The reverse order law revisited, Linear Algebra Appl.76 (1986), 241–246.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Marsaglia and G. P. H. Styan,Equalities and inequalities for rank of matrices, Linear and Multilinear Algebra2 (1974), 269–292.CrossRefMathSciNetGoogle Scholar
  9. 9.
    V. Rakočević and Y. Wei,A weighted Drazin inverse and applications, Linear Algebra Appl.350 (2002), 25–39.CrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Sun and Y. Wei,Inverse order law for weighted generalized inverse, SIAM J. Matrix Anal. Appl.19 (1998), 772–775.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    H. Tian,On the Reverse Order Law (AB) D =B D A D, J. Math. Research and Exposition19 (1999), 355–358.MATHGoogle Scholar
  12. 12.
    Y. Tian and G. P. H. Styan,Rank equalities for idempotent and involutory matrices, Linear Algebra Appl.335 (2001), 101–117.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Y. Tian,Reverse order law for the weighted Moore-Penrose of a triple matrix product with applications, Internat. Math. Journal3 (2003), 107–117.Google Scholar
  14. 14.
    G. Wang, Y. Wei and S. Qiao,Generalized Inverses: Theory and Computation, Science Press, Beijing/New York, 2004.Google Scholar
  15. 15.
    G. Wang,The reverse order law for the Drazin inverse of multiple matrix productions, Linear Algebra Appl.348 (2002), 265–272.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Wei,Equivalent conditions for generalized inverses of products, Linear Algebra Appl.261 (1997), 347–363.CrossRefGoogle Scholar
  17. 17.
    Y. Wei,A characterization for the W-weighted Drazin inverse and a Cramer rule for the W-weighted Drazin inverse solution, Appl. Math. Comput.125 (2002), 303–310.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Y. Wei, C. W. Woo and T. Lei,A note on the perturbation of the W-weighted Drazin inverse, Appl. Math. Comput.149 (2004), 423–430.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Werner,When is B - A - a generalized inverse of AB, Linear Algebra Appl.210 (1994), 255–263.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2006

Authors and Affiliations

  1. 1.College of Mathematical SciencesShanghai Normal UniversityShanghaiP. R. China
  2. 2.Department of Basic ScienceShanghai Maritime UniversityShanghaiP. R. China

Personalised recommendations