Skip to main content
Log in

Origin of cytokinin-and auxin-autonomy and changes in specific proteins in tobacco callus tissue

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

On the basis of earlier data it was suggested that the induction of cytokinin autonomy might be accompanied by disorders in plastid function and a decrease in cytokinin utilization. In the work presented below the formation of chlorophyll and the isozyme patterns of nine enzymes, some of which are known to be localized in plastids, were compared in tobacco callus tissues differing in their hormonal requirements. Tissues either not requiring cytokinin or both auxin and cytokinin for their growth, contained a lower amount of chlorophyll than the cytokinin-and auxin-dependent strain. The number of isozymes of glucose-6-phosphate and NADP-malate dehydrogenase (i.e. enzymes which are known to be located in plastids) was reduced from four in the cytokinin-and auxin-dependent strain to two and one in the two cytokinin-autonomous strains, respectively. The fully habituated tissue contained an additional isozyme of NADP-malate dehydrogenase. The total number of isozymes of the remaining enzymes (NAD-malate dehydrogenase, peroxidase, esterase and a-and β-galactosidase) either was decreased or not changed in the cytokinin autonomous strains. The exception was an additional anodic peroxidase in one strain. The number of these isozymes in tissue habituated with respect to both auxin and cytokinin either remained the same or increased. Tobacco callus strains with altered requirements for growth regulators contained some new isozymes which were not present in any other strain and some isozymes present in other strains were absent. These differences are discussed in relation to the possible role of plastid function disorder associated with habituation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D:

cytokinin- and auxin-dependent tobacco callus strain

AFH:

fully habituated, i.e. cytokinin- and auxin-autonomous tobacco callus strain

As and A2,4-D:

cytokinin-autonomous tobacco callus strains obtained after treatment of D tissue with streptomycin and 2,4-D, respectively

2,4-D:

2,4-dichlorophenoxyacetic acid

NAD-MDH and NADP-MDH:

malate dehydrogenase dependent on NAD and NADP, respectively

G6PDH:

glucose-6-phosphate dehydrogenase

References

  • Bednar, T. W., Linsmaier-Bednar, E. M., King, C. M.: Peroxidase-H2O2 catalyzed incorporation of auxin derivatives into sRNA. -Biochem. biophys. Res. Commun.72: 761–767, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Beneš, K., Georgieva, Y. D., Poláčková, D.: The presence and distribution of α-and β--glucosidase in root tip. -Biol. Plant.15: 88–94, 1973.

    Google Scholar 

  • Bouchet, M., Gaspar, Th., Thorpe, T. A.: Soluble and cell-wall peroxidases and auxin destruction in normal and habituated tobacco callus. -In Vitro14: 819–823, 1978.

    Article  CAS  Google Scholar 

  • Braun, A. C.: A physiological bases for autonomous growth of the crown-gall tumor cell. -Proc. nat. Acad. Sci. U.S.A.44: 344–349, 1958.

    Article  CAS  Google Scholar 

  • Buiatti, M., Bennici, A.: Callus formation and habituation inNicotiana species in relation to the specific ability for differentiation. -Acad. Nazionale dei Lincei, Rendiconti Classe Sci. fisiche, matem. e naturali Ser. VIII,48: 261–269, 1970.

    Google Scholar 

  • Davis, D. J.: Disc electrophoresis: II. Method and application to human serum proteins. -Ann. N.Y. Acad. Sci.121: 407–427, 1964.

    Article  Google Scholar 

  • Fottrell, F. F.: Esterase isozymes from legume root nodules. -Phytochemistry7: 23–29, 1968.

    Article  CAS  Google Scholar 

  • Hadačová, V., Kamínek, M., Luštinec, J.: Glusoce-6-phosphaee dehydrogenase in tobacco callus strains differing in their growth and their requirement for auxin and cytokinin. -Biol. Plant.17: 448–451, 1975.

    Google Scholar 

  • Hallam, N. D.: The effect of 2,4-dichlorophenoxyacetic acid and related compounds on the fine structure of primary leaves ofPhaseolus vulgaris. -J. exp. Bot.21: 1031–1038, 1970.

    Article  CAS  Google Scholar 

  • Hallam, N. D., Sargent, J. A.: The localization of 2,4-D in leaf tissue. -Planta94: 291–329, 1970.

    Article  CAS  Google Scholar 

  • Hatch, M. D., Slack, C. R.: NADP specific malate dehydrogenase and glycerate kinase in leaves and evidence for their location in chloroplasts. -Biochem. biophys. Res. Commun.34: 589–593, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Hoover, J. D., Wender, S. H., Smith, E. C.: Isozymes of glucose-6-phosphate dehydrogenase from tobacco cells. -Phytochemistry16: 195–197, 1977.

    Article  CAS  Google Scholar 

  • Kamínek, M., Luštinec, J.: Reduced chlorophyll synthesis in cytokinin-autonomous strains of tobacco callus. -Z. Pflanzenphysiol.73: 65–73, 1974a.

    Google Scholar 

  • Kamínek, M., Luštinec, J.: Induction of cytokinin-autonomy and chlorophyll-deficiency in tobacco callus tissue by streptomycin. -Z. Pflanzenphysiol.73: 74–81, 1974b.

    Google Scholar 

  • Kamínek, M., Luštinec, J.: Induction of cytokinin-autonomy in tobacco stem pith tissue by 2,4-dichlorophenoxyacetic acid. -In:Schreiber, K., Schütte, H. R., Sembdner, G. (ed.): Proc. Internat. Symp. “Biochemistry and Chemistry of Plant Growth Regulators”, Cottbus. Pp. 307–310. Acad. Sci. GDR Halle (Saale) 1974c.

    Google Scholar 

  • Lee, T. T.: Cytokinin-controlled indoleacetic acid oxidase isozymes in tobacco callus cultures. -Plant Physiol.47: 181–185, 1972a.

    Article  Google Scholar 

  • Lee, T. T.: Changes in indoleacetic acid oxidase isozymes in tobacco tissue after treatment with 2,4-dichlorophenoxyacetic acid.-Plant Physiol.49: 957–960, 1972b.

    PubMed  CAS  Google Scholar 

  • Lee, T. T.: Cytokinin control in subcellular localization of indoleacetic acid oxidase and peroxidase. -Phytochemistry13: 2445–2453, 1974.

    Article  CAS  Google Scholar 

  • Lescure, A. M.: Chloroplast differentiation in cultured tobacco cells:In vitro protein synthesis efficiency of plastids at various stages of their evolution. -Cell Differentiation7: 139–152, 1978.

    Article  CAS  Google Scholar 

  • Linsmaier, E. M., Skoog, F.: Organic growth factor requirements of tobacco tissue cultures. -Physiol. Plant.18: 100–127, 1965.

    Article  CAS  Google Scholar 

  • Mäder, M., Meyer, Y., Bopp, M.: Localization dor Peroxidase-isozyme in Protoplasten und Zellwänden vonNicotiana tabacum L. -Planta122: 259–268, 1971.

    Article  Google Scholar 

  • Nadakavukaren, M. J., McCracken, D. A.: Effect of 2,4-dichlorophenoxyacetic acid on the structure and function of developing chloroplasts. -Planta137: 65–69, 1977.

    Article  CAS  Google Scholar 

  • Novacký, A., Hampton, R. E.: The effect of substrate concentration on the visualization of peroxidases in disc electrophoresis. -Phytochemistry7: 1143–1145, 1968.

    Article  Google Scholar 

  • Reisfeld, R. A., Lewis, V. J., Williams, D. E.: Disc electrophoresis of basic proteins and peptides on polyacrylamide gels. -Nature195: 281–283, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Sacristán, M., Melchers, G.: Regeneration of plants from “habituated” and “Agrobacterium--transformed” single-cell clones of tobacco. -Molec. gen. Genet.152: 111–117, 1977.

    Article  Google Scholar 

  • Sahulka, J., Beneš, K.: Fractions of non-specific esterase in root tip ofVicia faba L. revealed by disc electrophoresis in acrylamide gel. -Biol. Plant.11: 23–33, 1969.

    CAS  Google Scholar 

  • Schrauwen, J.: Nachweis von Enzymen nach electrophoretischer Trennung an Polyacrylamidsäulchen. -J. Chromatogr.23: 117–180, 1966.

    Article  Google Scholar 

  • Seyer, P., Marty, D., Lescurf, A. M., Péaud-Lenoël, C: Effect of cytokinin on chloroplast cyclic differentiation in cultured tobacco cells. -Cell Differentiation4: 187–197, 1975.

    Article  CAS  Google Scholar 

  • Shinshi, H., Noguchi, M.: Relationships between peroxidase, IAA oxidase and polyphenol oxidase.-Phytochemistry14: 1255–1258, 1975.

    Article  CAS  Google Scholar 

  • Vyskot, B., Novák, F.: Habituation and organogenesis in callus cultures of chlorophyll mutants ofNicotiana tabacum L. -Z. Pflanzenphysiol.81: 34–42, 1977.

    Google Scholar 

  • Washitani, I., Sato, S.: Studies on the function of proplastids in the metabolism ofin vitro cultured tobacco cells. I. Localization of nitrite reductase and NADP-dependent glutamate dehydrogenase. -Plant Cell Physiol.18: 117–125, 1977a.

    CAS  Google Scholar 

  • Washitani, I., Sato, S.: Studies on the function of proplastids in the metabolism ofin vitro- cultured tobacco cells. III. Source of reducing power for amino acid synthesis from the nitrite. -Plant Cell Physiol.18: 1235–1241, 1977b.

    CAS  Google Scholar 

  • Zamski, E., Umiel, N.: Streptomycin resistance in tobacco: II. Effect of drug on the ultrastructure of plastids and mitochondria in callus cultures. -Z. Pflanzenphysiol.88: 317–325, 1978.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamínek, M., Hadačová, V. & Luštinec, J. Origin of cytokinin-and auxin-autonomy and changes in specific proteins in tobacco callus tissue. Biol Plant 23, 228–236 (1981). https://doi.org/10.1007/BF02894894

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02894894

Keywords

Navigation