Advertisement

Virchows Archiv B

, 16:249 | Cite as

Fetal hemopoiesis

II. Electron microscopic studies on human hepatic hemopoiesis
  • T. Fukuda
Article

Summary

Hemopoiesis in the liver of 26 human embryos and fetuses at 26 days after ovulation to 30 weeks of gestation was studied by electron microscopy.

The development of hepatic hemopoiesis seems to be closely correlated with the histogenetic developmental course of the liver. In the earliest stage of hepatic hemopoiesis, undifferentiated mononuclear cells, i.e. presumptive hemopoietic stem cells and transitional cells to the immature erythroid cells, are found in the intercellular spaces of the hepatocytes. With the development of the fetus, erythroid cells increase in the hepatic parenchyma, whereas the stem cells become gradually reduced in number and cannot be detected in the later stages. These stem cells are exclusively observed in the extravascular spaces and are considered to be derived from the septum transversum.

The ultrastructure of hepatic erythroid cells is quite different from yolk sac-derived primitive erythroblasts and myeloid erythroblasts of the adult. Generally, hepatic erythroid cells show less discrepancy of nuclear and cytoplasmic maturation and free polyribosomes found in the cytoplasm are smaller in size and number than primitive erythroblasts. The particular cytoplasmic features found in primitive erythroblasts, and the microtubules characteristic of myeloid erythroblasts of the adult, are rarely observed in hepatic series.

The primitive and hepatic series of erythroid cells seem to be independent of each other and are considered to belong to different clones.

A small number of granulocytic and megakaryocytic cells are found from the earliest stages of hepatic hemopoiesis and their morphology seems to be different from that of the adult.

Kupffer’s stellate cells of the liver exist prior to the myeloid monoeytogenesis.

Keywords

Erythroid Cell Hemopoietic Stem Cell Glycogen Particle Haemopoietic Stem Cell Sinusoidal Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackerman, G. A.: Ultrastructure and cytochemistry of the developing neutrophil. Lab. Invest.19, 290–302 (1968)Google Scholar
  2. Aron, M.: Origine du sang dans le foie embryonnaire. C. R. Soc. Biol. (Paris)81, 362–364 (1921)Google Scholar
  3. Bainton, D. F., Farquhar, M. G.: Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J. Cell Biol.28, 277–301 (1966)PubMedCrossRefGoogle Scholar
  4. Barnes, D. W. H., Loutit, J. F.: Haemopoietic stem cells in the peripheral blood. Lancet1967 II, 1138–1141Google Scholar
  5. Bekkum, D. W. van, Noord, M. J. van, Maat, B., Dicke, K. A.: Attempts at identification of hemopoietic stem cell in mouse. Blood38, 547–558 (1971)PubMedGoogle Scholar
  6. Bessis, M.: Ultrastructure of normal and leukemic granulocytes. Proc. Int. Conf. on leukemia and lymphoma, p. 281–302. Philadelphia: Lea & Febiger 1968Google Scholar
  7. Bessis, M., Breton-Gorius, J.: Ultrastructure du pro-érythroblaste. Nouv. Rev. franç. Hémat.1, 529–533 (1961)Google Scholar
  8. Bessis, M., Thiéry, J. P.: Electron microscopy of human white blood cells and their stem cells. Int. Rev. Cytol.12, 199–241 (1961)PubMedCrossRefGoogle Scholar
  9. Bloom, W.: Embryogenesis of mammalian blood. In: Downey, H. (ed.), Handbook of hematology, vol. 2, p. 856–922. New York: Paul B. Hoeber 1938Google Scholar
  10. Bloom, W., Bartelmez, G. W.: Haematopoiesis in young human embryos. Amer. J. Anat.67, 21–53 (1940)CrossRefGoogle Scholar
  11. Boyd, W. H.: Transformation of hepatic reticuloendothelial cells to erythroid cells by pars intermedia. Amer. J. Physiol.219, 1614–1619 (1970)PubMedGoogle Scholar
  12. Capone, R. J., Weinreb, E. L., Chapman, G. B.: Electron microscope studies on normal human myeloid elements. Blood23, 300–320 (1964)PubMedGoogle Scholar
  13. Cline, M. J., Moore, M. A. S.: Embryonic origin of the mouse macrophage. Blood39, 842–849 (1972)PubMedGoogle Scholar
  14. Cole, R. J., Hunter, J., Paul, J.: Hormonal regulation of prenatal haemoglobin synthesis by erythropoietin. Brit. J. Haemat.14, 477–488 (1968)PubMedCrossRefGoogle Scholar
  15. Cole, R. J., Paul, J.: The effects of erythropoietin on haemsynthesis in mouse yolk sac and cultured foetal liver cells. J. Embryol. exp. Morph.15, 245–260 (1966)PubMedGoogle Scholar
  16. Dicke, K. A., Noord, M. J. van, Bekkum, D. W. van: Attempts at morphological identification of hemopoietic stem cell in rodents and primates. Exp. Hemat.1, 36–45 (1973)PubMedGoogle Scholar
  17. DuBois, A. M.: The embryonic liver. In: Rouiller, Ch. (ed.), The liver, vol. 1, p. 1–39. New York-London: Academic Press 1963Google Scholar
  18. Dunn, C. D. R.: The differentiation of haemopoietic stem cells. Series Haematol.4, 4, 1–71 (1971)Google Scholar
  19. Fukuda, T.: Paired cisternae, the characteristic feature of foetal cells. Experientia (Basel)28, 317–318 (1972a)Google Scholar
  20. Fukuda, T.: Fetal hemopoiesis. Ph. D.-thesis, Postgraduate School of Science, Tohoku University (1972b)Google Scholar
  21. Fukuda, T.: Undifferentiated mononuclear cell in human embryonic liver; presumptive hematopoietic stem cell. Virchows Arch. Abt. B14, 31–34 (1973a)Google Scholar
  22. Fukuda, T.: Fetal hemopoiesis I. Electron microscopic studies on human yolk sac hemopoiesis. Virchows Arch. Abt. B14, 197–213 (1973b)Google Scholar
  23. Fukuda, T., Sato, H.: Desmosome, cilia, and peculiar structure of membranes in erythroblasts of human fetal liver. Virchows Arch. Abt. B7, 309–313 (1971)Google Scholar
  24. Furth, R. van: The origin and turnover of promonocytes, monocytes and macrophages in normal mice. In: Furth, R. van (ed.), Mononuclear phagocytes, p. 151–165. Oxford: Blackwell 1970Google Scholar
  25. Gilmour, J. R.: Normal haemopoiesis in intra-uterine and neonatal life. J. Path. Bact.52, 25–55 (1941)CrossRefGoogle Scholar
  26. Grasso, J. A.: Cytoplasmic microtubules in mammalian erythropoietic cells. Anat. Rec.156, 397–414 (1966)PubMedCrossRefGoogle Scholar
  27. Grasso, J. A., Swift, H., Ackerman, G. A.: Observations on the development of erythrocytes in mammalian fetal liver. J. Cell Biol.14, 235–254 (1962)PubMedCrossRefGoogle Scholar
  28. Howard, J. G.: The origin and immunological significance of Kupffer cells. In: Furth, R. van (ed.), Mononuclear phagocytes. p. 178–199 Oxford: Blackwell 1970Google Scholar
  29. Ingram, V. M.: Embryonic red cell formation. Nature (Lond.)235, 338–339 (1972)CrossRefGoogle Scholar
  30. Ito, T., Nemoto, M.: Über die Kupffer’schen Sternzellen und die “Fettspeicherungszellen” (“fat-storing cells”) in der Blutkapillarenwand der menschlichen Leber. Folia anat. jap.24, 243–258 (1952)Google Scholar
  31. Ito, T., Shibasaki, S.: Electron microscopic study on the hepatic sinusoidal wall and the fatstoring cells in the normal human liver. Arch. hist. jap.29, 137–192 (1968)Google Scholar
  32. Karrier, H. E., Cox, J.: Electron microscopic observations on chick embryo liver. J. Ultrastruct. Res.5, 116–141 (1961)CrossRefGoogle Scholar
  33. Kay, H. E. M., Playfair, J. H. L., Wolfendale, M., Hopper, P. K.: Development of the thymus in the human foetus and its relation to immunological potential. Nature (Lond.)196, 238–240 (1962)CrossRefGoogle Scholar
  34. Krantz, S. B., Jacobson, L. O.: Erythropoietin and regulation of erythropoiesis. Chicago-London: Chicago Univ. Press 1970Google Scholar
  35. Loutit, J.F.: Versatile haemopoietic stem cells. Brit. J. Haemat.15, 333–336 (1968)PubMedCrossRefGoogle Scholar
  36. Marks, P. A., Rifkind, R. A.: Protein synthesis, its control in erythropoiesis. Science175, 955–961 (1972)PubMedCrossRefGoogle Scholar
  37. Maximow, A.: Relation of blood cells to connective tissues and endothelium. Physiol. Rev.4, 533–563 (1924)Google Scholar
  38. Maximow, A.: Bindegewebe und blutbildende Gewebe. In: Möllendorf, W. (Ed.), Handbuch der mikroskopischen Anatomie des Menschen, Bd. II/l, S. 232–583. Berlin: Springer 1927Google Scholar
  39. Metcalf, D., Moore, M. A. S.: Haemopoietic cells. Amsterdam-London: North Holland 1971Google Scholar
  40. Moore, M. A. S., Metcalf, D.: Ontogeny of the haemopoietic system: Yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Brit. J. Haemat.18, 279–296 (1970)PubMedCrossRefGoogle Scholar
  41. Murphy, M. J., Jr., Bertles, J. F., Gordon, A. S.: Identifying characteristics of the haematopoietic precursor cell. J. Cell Sci.9, 23–47 (1971)PubMedGoogle Scholar
  42. Rifkind, R. A., Chui, D., Epler, H.: An ultrastructural study of early morphogenetic events during the establishment of fetal hepatic erythropoiesis. J. Cell Biol.40, 343–365 (1969)PubMedCrossRefGoogle Scholar
  43. Rubinstein, A. S., Trobaugh, F. E., Jr.: Ultrastructure of presumptive hematopoietic stem cells. Blood42, 61–80 (1973)PubMedGoogle Scholar
  44. Seki, M.: Differentiation of hematopoietic cells. [Jap.]. Handbook of cytology vol. 7, (Ogawa, K., Oda, T., Kurosumi, K., Sugino, S., eds.), p. 185–219. Tokyo: Asakura 1971Google Scholar
  45. Seno, S.: Critique of stem cell concept. [Jap.] Saishin-Igaku (Recent Medicine)28, 1664–1672 (1973)Google Scholar
  46. Sorenson, G. D.: Hepatic hematocytopoiesis in the fetal rabbit: a light and electron microscopic study. Ann. N. Y. Acad. Sci.111, 45–69 (1963)PubMedCrossRefGoogle Scholar
  47. Tanaka, Y., Goodman, J. R.: Electron microscopy of human blood cells. New York-Evanston-San Francisco-London: Harper Row 1972Google Scholar
  48. Thomas, D. B., Yoffey, J. M.: The origin of the hepatic hemocytoblasts. J. Anat. (Lond.)95, 605 (1961)Google Scholar
  49. Thomas, D. B., Yoffey, J. M.: Human foetal haematopoiesis. II. Hepatic haematopoiesis in the human faetus. Brit. J. Haemat.10, 193–197 (1964)PubMedCrossRefGoogle Scholar
  50. Töndury, G., Kubik, S.: Zur Ontogenese des lymphatischen Systems. In: Handbuch der allgemeinen Pathologie, Bd. HI/6, Lymphgefäßsystem (Meessen, H., Hrsg.). S. 1–38 Berlin-Heidelberg-New York: Springer 1972Google Scholar
  51. Yoffey, J. M.: The stem cell problem in the fetus. Israel J. med. Sci.7, 825–833 (1971)PubMedGoogle Scholar
  52. Yoffey, J. M.: Haemopoietic stem cells. Ciba Foundation Symposium 13 (New Series). Amsterdam-London-New York: Elsevier-Excerpta Medica-North Holland 1973Google Scholar
  53. Zamboni, L.: Electron microscopic studies of blood embryogenesis in humans. I. Ultrastructure of the fetal liver, II. The hemopoietic activity in the fetal liver. J. Ultrastruct. Res.12, 509–524, 525–541 (1965)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • T. Fukuda
    • 1
  1. 1.Department of PathologyTohoku University, School of MedicineSendai

Personalised recommendations