Advertisement

Virchows Archiv B

, Volume 12, Issue 1, pp 123–132 | Cite as

Prevention by cycloheximide of neutral red-induced formation of autophagic vacuoles and krinom granules in mouse pancreatic acinar cells

  • G. Réz
  • J. Kovács
Article

Summary

The effect of cycloheximide on neutral red-induced autophagocytosis in pancreatic acinar cells of the mousein vivo was investigated. Administration of the dye resulted in an appearance of basophilic granules (Chlopin’s krinom granules) in the cytoplasm. The cells containing krinom granules were always found to contain a great number of autophagic vacuoles in various stages of degradation. It was concluded, that the krinom granules are light microscopic indicators of autophagy in this cell type. Cycloheximide in doses of 0.1 mg/g body weight and 0.05 mg/g b.w. given simultaneously with or prior to neutral red was found to prevent the dye-induced formation of autophagic vacuoles and krinom granules as well. Evidence was obtained that it was not due to an inhibition of the cellular uptake of neutral red. The protective effect of the drug might be related to its capability for preserving the ultrastructural integrity of the endoplasmic reticulum.

Keywords

Acinar Cell Pancreatic Acinar Cell Autophagic Vacuole Zymogen Granule Cellular Autophagy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alousi, M. A., Stenger, R. J., Morgan, W.S.: The fine structure of pancreatic acinar and hepatic parenchymal cells after neutral red dye injection. Exp. molec. Path.9, 97–109 (1968).PubMedCrossRefGoogle Scholar
  2. Arstila, A.U., Trump, B.F.: Autophagocytosis: origin of membrane and hydrolytic enzymes. Virchows Arch. Abt. B2, 85–90 (1969).Google Scholar
  3. Byrne, J.M.: An electronmicroscopical study of neutral red granules in mouse exocrine pancreas. Quart. J. micr. Sci.105, 219–225 (1964).Google Scholar
  4. Chlopin, N. G.: Experimentelle Untersuchungen über die sekretorischen Prozesse in Zytoplasma I. Über die Reaktion der Gewebselemente auf intravitale Neutralrotfärbung. Arch. exp. Zellforsch.4, 465–559 (1927).Google Scholar
  5. David, H.: Zellschädigung und Dysfunktion. Lysosomen, Zytolysomen, Phagolysomen und Pigmente. In: Protoplasmatologia, Bd. X, 1, S. 161–203. Wien-New York: Springer 1970.Google Scholar
  6. Duve, C. de, Wattiaux, R.: Functions of lysosomes. Ann. Rev. Physiol.28, 435–492 (1966).CrossRefGoogle Scholar
  7. Ericsson, J.L.E.: Mechanism of cellular autophagy. In: Lysosomes in biology and pathology, vol, I, p. 345–384. Amsterdam-London: North Holland 1969.Google Scholar
  8. Essner, E.: Cytochemical studies of neutral red-induced granules in mouse pancreatic exocrine cells. VII-éme Congr. Internat. Micr. Electr. Grenoble, vol. III, 497–498 (1970).Google Scholar
  9. Farber, E., Liang, H., Shinozuka, H.: Dissociation of effects on protein synthesis and ribosomes from membrane changes induced by carbon tetrachloride. Amer. J. Path.64, 601–622 (1971).PubMedGoogle Scholar
  10. Harris, C., Grady, H., Svoboda, D.: Alterations in pancreatic and hepatic ultrastructure following acute cycloheximide intoxication. J. Ultrastruct. Res.22, 240–251 (1968).PubMedCrossRefGoogle Scholar
  11. Hrdina, P.D., Singhai, R.L.: Neurotoxic effects of DDT: protection by cycloheximide. J. Pharm. Pharmac.24, 167–169 (1972).Google Scholar
  12. Kovács, J.: Electron microscopic study of crinome formation (cytoplasmic degradation) in the mouse seminal vesicle. Ann. Univ. Sci. Budapest, Sect. Biol.11, 43–51 (1969).Google Scholar
  13. Kovács, J., Péczely, P.: Electron microscopic examination of the effect of neutral red on the epithelial cells of the seminal vesicle of the mouse. Acta biol. Acad. Sci. hung.16, 275–283 (1966).PubMedGoogle Scholar
  14. Kovács, J., Réz, G.: Prevention of neutral red-induced krinom formation and autophagooytosis by cycloheximide in epithelial cells. Acta biol. Acad. Sci. hung.23, in press (1972).Google Scholar
  15. Lieberman, M.W., Verbin, R. S., Landay, M., Liang, H., Färber, B., Lee, T.N., Starr, R.: A probable role for protein synthesis in intestinal epithelial cell damage induced in vivo by cytosine, arabinoside, nitrogen mustard, or X-irradiation. Cancer Res.30, 942–951 (1970).PubMedGoogle Scholar
  16. Longnecker, D. S.: Organ distribution of puromycin in rats. A possible basis for selctive tissue toxicity. Lab. Invest.22, 400–403 (1970).PubMedGoogle Scholar
  17. Longnecker, D.S.: Modification of puromycin-induced changes in pancreatic acinar cells by cycloheximide pretreatment in rats. Lab. Invest.26, 459–464 (1972).PubMedGoogle Scholar
  18. Longnecker, D.S., Edmonds, T.T.: Electron microscopy of gastric mucosa from puromycin treated rats. Amer. J. Path.57, 65–80 (1969).PubMedGoogle Scholar
  19. Longnecker, D. S., Shinozuka, H., Farber, E.: Molecular pathology of in vivo inhibition of protein synthesis. Electron microscopy of rat pancreatic acinar cells in puromycin-induced necrosis. Amer. J. Path.52, 891–916 (1968).PubMedGoogle Scholar
  20. Morgan, W. S., Fernando, J., Alousi, M.: Studies on the biological activity of neutral red. Exp. molec. Path.5, 491–500 (1966).PubMedCrossRefGoogle Scholar
  21. Nassonov, D.N., Alexandrow, W.: Über die Ursachen der kolloidalen Veränderungen des Protoplasmas und der erhöhten Affinität des letzteren den Farbstoffen gegenüber unter dem Einflüsse schädigender Agentien. Acta zool. (Stockh.)24, 189–214 (1943).CrossRefGoogle Scholar
  22. Pfeifer, U.: Probleme der cellulären Autophagie. Morphologische, enzymzytochemische und quantitative Untersuchungen an normalen und alterierten Leberepithelien der Ratte. Ergebn. Anat. Entwickl.-Gesch.44, 1–74 (1971).Google Scholar
  23. Rajalakshmi, S., Liang, H., Sarma, D.S.L., Kisilevsky, R., Farber, E.: Cycloheximide, an inhibitor of peptide-chain termination or release in liver in vivo and in vitro. Biochem. biophys. Res. Commun.42, 259–265 (1971).PubMedCrossRefGoogle Scholar
  24. Réz, G., Kovács, J.: A light and electron microscopic study of the focal cytoplasmic degradation of the cells of mouse exocrine pancreas. Mikroskopie (Abstr.)22, 347 (1967).Google Scholar
  25. Réz, G., Kovács, J.: Morphological examination of autophagic vacuoles formed in mouse pancreatic exocrine cells under the effect of neutral red. Ann. Univ. Sci. Budapest, Sect. Biol.13, 315–326 (1971).Google Scholar
  26. Stanners, C.P.: The effect of cycloheximide on polyribosomes from hamster cells. Biochem. biophys. Res. Commun.24, 758–764 (1966).Google Scholar
  27. Trakatellis, A.C., Montjar, M., Axelrod, A.E.: Effect of cycloheximide on polysomes and protein synthesis in the mouse liver. Biochemistry (Wash.)4, 2065–2071 (1965).Google Scholar
  28. Verbin, R. S., Goldblatt, P. J., Farber, E.: The biochemical pathology of inhibition of protein synthesis in vivo. The effect of cycloheximide on hepatic parenchymal cell ultrastructure. Lab. Invest.20, 529–536 (1969).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • G. Réz
    • 1
  • J. Kovács
    • 1
  1. 1.Department of General ZoologyEötvös University, BudapestBudapestHungary

Personalised recommendations