On the minimum of harmonic functions

  • Alexander Borichev


Letu be a function harmonic in the unit disc or in the plane, and letu(z)M(|z|) for a majorantM. We formulate conditions onM that guarantee thatu(z)≥−(1+o(1))M(|z|) for |z|→1 in the disc and for |z|→∞ in the plane.


Harmonic Function Unit Disc Bergman Space Harmonic Measure Extremal Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    S. A. Apresyan,All closed ideals of the algebra A φ (ℂ) are divisorial, Zap. Nauchn. Sem. LOMI92 (1979), 253–258 (Russian).MathSciNetMATHGoogle Scholar
  2. [2]
    A. Borichev, H. Hedenmalm and A. Volberg,Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index, preprint, 2000.Google Scholar
  3. [3]
    M. L. Cartwright,On analytic functions regular in the unit circle, I, Quart. J. Math. Oxford4 (1933), 246–256.Google Scholar
  4. [4]
    Y. Domar,Extensions of the Titchmarsh convolution theorem, with applications in theory of invariant subspaces, Proc. London Math. Soc.46 (1983), 288–300.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    J. Garnett,Bounded Analytic Functions, Academic Press, New York, 1981.MATHGoogle Scholar
  6. [6]
    N. V. Govorov,Riemann's Boundary Problem with Infinite Index, Nauka, Moscow, 1986; English transl.: Birkhäuser Verlag, Basel, 1994.Google Scholar
  7. [7]
    W. K. Hayman,The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull.17 (1974), 317–358.MATHMathSciNetGoogle Scholar
  8. [8]
    J. Jenkins and K. Oikawa,On results of Ahlfors and Hayman, Illinois J. Math.15 (1971), 664–671.MATHMathSciNetGoogle Scholar
  9. [9]
    B. Ya. Levin,Lectures on Entire Functions, Translations of Mathematical Monographs 150, Amer. Math. Soc., Providence, RI, 1996.MATHGoogle Scholar
  10. [10]
    V. I. Macaev and E. Z. Mogulskiî,A division theorem for analytic functions with a given majorant and some applications, Zap. Nauchn. Sem. LOMI56 (1976), 73–89; English transl.: J. Soviet Math.14 (1980), 1078–1091.Google Scholar
  11. [11]
    N. K. Nikolskiî,Selected problems of weighted approximation and spectral analysis, Trudy MIAN120 (1974); English transl.: Proc. Steklov Inst. Math.120 (1974), Amer. Math. Soc., Providence, RI, 1976, 276 pp.Google Scholar
  12. [12]
    B. Rodin and S. E. Warschawski,Extremal length and the boundary behavior of conformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math.2 (1976), 467–500.MathSciNetMATHGoogle Scholar
  13. [13]
    B. Rodin and S. E. Warschawski,Extremal length and univalent functions II. Integral estimates of strip mappings, J. Math. Soc. Japan31 (1979), 87–99.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. E. Warschawski,On conformal mapping of infinite strips, Trans. Amer. Math. Soc.51 (1942), 280–335.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Wiman,Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Betrage bei gegebenem Argumente der Funktion, Acta Math.41 (1914), 1–28.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Bordeaux ITalenceFrance

Personalised recommendations