On the minimum of harmonic functions



Letu be a function harmonic in the unit disc or in the plane, and letu(z)M(|z|) for a majorantM. We formulate conditions onM that guarantee thatu(z)≥−(1+o(1))M(|z|) for |z|→1 in the disc and for |z|→∞ in the plane.


Harmonic Function Unit Disc Bergman Space Harmonic Measure Extremal Length 


  1. [1]
    S. A. Apresyan,All closed ideals of the algebra A φ (ℂ) are divisorial, Zap. Nauchn. Sem. LOMI92 (1979), 253–258 (Russian).MathSciNetMATHGoogle Scholar
  2. [2]
    A. Borichev, H. Hedenmalm and A. Volberg,Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index, preprint, 2000.Google Scholar
  3. [3]
    M. L. Cartwright,On analytic functions regular in the unit circle, I, Quart. J. Math. Oxford4 (1933), 246–256.Google Scholar
  4. [4]
    Y. Domar,Extensions of the Titchmarsh convolution theorem, with applications in theory of invariant subspaces, Proc. London Math. Soc.46 (1983), 288–300.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    J. Garnett,Bounded Analytic Functions, Academic Press, New York, 1981.MATHGoogle Scholar
  6. [6]
    N. V. Govorov,Riemann's Boundary Problem with Infinite Index, Nauka, Moscow, 1986; English transl.: Birkhäuser Verlag, Basel, 1994.Google Scholar
  7. [7]
    W. K. Hayman,The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull.17 (1974), 317–358.MATHMathSciNetGoogle Scholar
  8. [8]
    J. Jenkins and K. Oikawa,On results of Ahlfors and Hayman, Illinois J. Math.15 (1971), 664–671.MATHMathSciNetGoogle Scholar
  9. [9]
    B. Ya. Levin,Lectures on Entire Functions, Translations of Mathematical Monographs 150, Amer. Math. Soc., Providence, RI, 1996.MATHGoogle Scholar
  10. [10]
    V. I. Macaev and E. Z. Mogulskiî,A division theorem for analytic functions with a given majorant and some applications, Zap. Nauchn. Sem. LOMI56 (1976), 73–89; English transl.: J. Soviet Math.14 (1980), 1078–1091.Google Scholar
  11. [11]
    N. K. Nikolskiî,Selected problems of weighted approximation and spectral analysis, Trudy MIAN120 (1974); English transl.: Proc. Steklov Inst. Math.120 (1974), Amer. Math. Soc., Providence, RI, 1976, 276 pp.Google Scholar
  12. [12]
    B. Rodin and S. E. Warschawski,Extremal length and the boundary behavior of conformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math.2 (1976), 467–500.MathSciNetMATHGoogle Scholar
  13. [13]
    B. Rodin and S. E. Warschawski,Extremal length and univalent functions II. Integral estimates of strip mappings, J. Math. Soc. Japan31 (1979), 87–99.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. E. Warschawski,On conformal mapping of infinite strips, Trans. Amer. Math. Soc.51 (1942), 280–335.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Wiman,Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Betrage bei gegebenem Argumente der Funktion, Acta Math.41 (1914), 1–28.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Bordeaux ITalenceFrance

Personalised recommendations