Computational Statistics

, Volume 19, Issue 2, pp 243–259 | Cite as

Bootstrap techniques in semiparametric estimation methods for ARFIMA models: A comparison study

  • Glaura C. Franco
  • Valderio A. Reisen


This paper considers different bootstrap procedures for investigating the estimation of the fractional parameter d in a particular case of long memory processes, i.e. for ARFIMA models withd in (0.0, 0.5). We propose two bootstrap techniques to deal with semiparametric estimation methods of d. One approach consists of the local bootstrap method for time frequency initially suggested for the ARMA case by Paparoditis and Politis (1999), and the other consists of the bootstrapping in the residuals of the frequency-domain regression equation. Through Monte Carlo simulation, these alternative bootstrap methods are compared, based on the mean and the mean square error of the estimators, with the well-known parametric and nonparametric bootstrap techniques for time series models.


Semiparametric procedures Fractionally integrated ARMA process Bootstrap in the residuals Local bootstrap Regression bootstrap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, M.K. and Gredenhoff, M.P. (1998), Robust testing for fractional integration using the bootstrap.Working Paper Series in Economics and Finance, Stockholm School of Economics, No 218.Google Scholar
  2. Beran, J. (1994),Statistics for long memory process. New York: Chapman and Hall.Google Scholar
  3. Bisaglia, L. and Guégan, D. (1998), A Comparison of Techniques of Estimation in Long Memory Processes,Computational Statistics and Data Analysis,27, 61–81.MATHCrossRefGoogle Scholar
  4. Cao, R. (1999), An overview of bootstrap methods for estimating and predicting in time series.Test,8, 1, 95–116.MATHCrossRefMathSciNetGoogle Scholar
  5. Davison, A.C. and Hinkley, D.V. (1997),Bootstrap Methods and their Application. Cambridge: Cambridge University Press.MATHGoogle Scholar
  6. Efron, B. (1979), Bootstrap methods: another look at the Jackknife.The Annals of Statistics,7, 1–26.MATHCrossRefMathSciNetGoogle Scholar
  7. Efron, B. and Tibshirani, R. (1993),An introduction to the bootstrap. New York: Chapman and Hall.MATHGoogle Scholar
  8. Franco, G.C. and Souza, R.C. (2002), A comparison of methods for bootstrapping in the local level model,Journal of Forecasting, 21, 27–38.CrossRefGoogle Scholar
  9. Geweke, J. and Porter-Hudak, S. (1983), The estimation and application of long memory time series model.Journal of Time Series Analysis,4(4), 221–238.MATHMathSciNetGoogle Scholar
  10. Granger, C.W.J. and Joyeux, R. (1980), An introduction to long memory time series and fractional differencing.Journal of Time Series Analysis,1, 15–30.MATHMathSciNetGoogle Scholar
  11. Hosking, J. (1981), Fractional differencing.Biometrika,68 (1), 165–175.MATHCrossRefMathSciNetGoogle Scholar
  12. Hosking, J. (1984), Modelling persistence in hydrological time series using fractional differencing.Water Resources Research,20(12), 1898–1908.CrossRefGoogle Scholar
  13. Kunsch, H.R. (1989), The jackknife and the bootstrap for general stationary observations.The Annals of Statistics,17, 1217–1241.CrossRefMathSciNetGoogle Scholar
  14. Li, H. and Maddala, G.S. (1996), Bootstrapping time series models.Econometric Reviews 15, 115–158.MATHCrossRefMathSciNetGoogle Scholar
  15. Liu, R.Y. and Singh, K. (1992), Moving blocks jackknife and bootstrap capture weak dependence.Exploring the limits of bootstrap (R. LePage and L. Billard, eds.), John Wiley, New York, 225–248.Google Scholar
  16. Lobato, I. and Robinson, P. M. (1996), Averaged periodogram estimation of long Memory.Journal of Econometrics,73, 303–324.MATHCrossRefMathSciNetGoogle Scholar
  17. Ooms, M. and Doornik, J.A. (1999), Inference and forecasting for fractional autoregressive integrated moving average models with an application to US and UK inflation.Econometric Institute Report EI-9947/A, Erasmus Univ. Rotterdam.Google Scholar
  18. Paparoditis, E. and Politis, D.N. (1999), The local bootstrap for periodogram statistics.Journal of Time Series Analysis,20(2), 193–222.MATHCrossRefMathSciNetGoogle Scholar
  19. Politis, D.N. and Romano, J.R. (1994), The stationary bootstrap.Journal of the American Statistical Association.89, 1303–1313.MATHCrossRefMathSciNetGoogle Scholar
  20. Reisen, V.A. (1994), Estimation of the fractional difference parameter in the ARIMA(p, d, q) model using the smoothed periodogram.Journal of Time Series Analysis,15(3), 335–350.MATHMathSciNetGoogle Scholar
  21. Reisen, V.A., Abraham, B. and Toscano, E.M.M. (2000), Parametric and semiparametric estimations of stationary univariate ARFIMA models.Brazilian Journal of Probability and Statistics,14, 185–206.MATHGoogle Scholar
  22. Reisen, V.A., Abraham, B. and Lopes, S. (2001), Estimation of parameters in ARFIMA process. Simulation study.Communications in Statistics.Simulation and Computation,30(4), 787–803.MATHCrossRefMathSciNetGoogle Scholar
  23. Robinson, P.M. (1994), Semiparametric analysis of long-memory time series.The Annals of Statistics.22(1), 515–539.MATHCrossRefMathSciNetGoogle Scholar
  24. Robinson, P.M. (1995), Log-periodogram regression of time series with long range dependence.The Annals of Statistics,23(3), 1048–1072.MATHCrossRefMathSciNetGoogle Scholar
  25. Shi, S.G. (1991), Local bootstrap.Ann. Inst. Stat. Math., 43, 667–76.MATHCrossRefGoogle Scholar
  26. Silva, E.M. (2001), Diferentes abordagens bootstrap em modelos ARFIMA(p, d, q).MSc dissertation, Department of Statistics - UFMG, Brazil.Google Scholar
  27. Smith, J., Taylor, N. and Yadav, S. (1997), Comparing the bias and misspecification in ARFIMA models.Journal of Time Series Analysis,18(5), 507–527.MATHCrossRefGoogle Scholar
  28. Staffer, D.S. and Wall, K.D. (1991), Bootstrapping state-space models: gaussian maximum likelihood estimation and the Kalman filter.Journal of the American Statistical Association,86, 1024–1033.CrossRefMathSciNetGoogle Scholar

Copyright information

© Physica-Verlag 2004

Authors and Affiliations

  1. 1.Department of StatisticsUFMGBelo Horizonte, MGBrazil
  2. 2.Department of StatisticsCCEGoiabeirasUFES/Brazil

Personalised recommendations