Skip to main content
Log in

Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The morphology of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine and egg-phosphatidylcholine vesicles was observed by freeze-fracture electron microscopy. The rotational diffusion of bacteriorhodopsin at different concentrations of melittin was measured by observing flash-induced transient dichroism in dimyristoylphosphatidylcholine vesicles. In the presence of melittin, bacteriorhodopsin molecules in dimyristoylphosphatidylcholine vesicles were aggregated into large particles or patches, and the ability of rotational diffusion of bacteriorhodopsin in vesicles was decreased. This suggests that melittin produces its effect via direct electrostatic interaction with bacteriorhodopsin. Low temperature-induced aggregation of bacteriorhodopsin was also observed in dimyristoylphosphatidylcholine vesicles. Low temperature may cause phase separation. Bacteriorhodopsin was also successfully reconstituted into egg-phosphatidylcholine vesicles, but low temperature-induced aggregation of bacteriorhodopsin in dimyristoylphosphatidylcholine cannot appear in egg-phosphatidylcholine vesicles. This suggests that different lipids have different effects on bacteriorhodopsin in vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoeckenius, W., Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps, Protein Science, 1999, 8: 447.

    CAS  Google Scholar 

  2. Ebrey, T. G., Light energy transduction in bacteriorhodopsin, in Thermodynamics of Membranes, Receptors and Channels (ed. Jackson, M.), New York: CRC Press, 1993, 353–387.

    Google Scholar 

  3. Lanyi, J. K., Understanding structure and function in the light-driven proton pump bacteriorhodopsin, J. Struct. Biol., 1998, 124: 164.

    Article  CAS  Google Scholar 

  4. Quay, S. C., Condie, C. C., Conformational studies of aqueous melittin: Thermodynamic parameters of the monomer-tetramer self-association reaction, Biochemistry, 1983, 22: 695.

    Article  CAS  Google Scholar 

  5. Habermann, E., Bee and wasp venoms, Science, 1972, 177: 314.

    Article  CAS  Google Scholar 

  6. Tosteson, M. T., Holmes, S. J., Razin, M. et al., Melitton lysis of red cells, J. Membr. Biol., 1985, 87: 35.

    Article  CAS  Google Scholar 

  7. Hu, K. S., Dufton, M. J., Morrison, I. E. G. et al., Cherry interaction of bee venom melittin with bacteriorhodopsin in lipid vesicles: Protein rotational diffusion measurement, Biochem. Biophys. Acta, 1985, 816(2): 358.

    Article  CAS  Google Scholar 

  8. Shi, H., Hu, K. S., Huang, Y. et al., Effect of melittin on photocycle and photoresponse of purple membrane: sites of interaction between bacteriorhodopsin and melittin, Photochemistry and Photobiology, 1993, 58(3): 413.

    Article  CAS  Google Scholar 

  9. Jiang, Q. X., Hu, K. S., Shi, H., Interaction of both melittin and its site-specific mutants with bacteriorhodopsin of Halobacterium halobium: sites of electrostatic interaction on melittin, Photochemistry and Photobiology, 1994, 60(2): 175.

    Article  CAS  Google Scholar 

  10. Doebler, R., Basaran, N., Goldston H. et al., Effect of protein aggregation into aqueous phase on the binding of membrane proteins to membranes, Biophys. J., 1999, 76: 928.

    Article  CAS  Google Scholar 

  11. Rehorek, M., Heyn, M. P., Binding of all-trans-retinal to the purple membrane, Evidence for cooperativity and determination of the extinction coefficient, Biochemistry, 1979, 18: 4977.

    Article  CAS  Google Scholar 

  12. Chen, P. S. Jr., Toribara, T. Y., Warner, H., Microdetermination of phosphorous, Anal. Chem., 1956, 28: 1756.

    Article  CAS  Google Scholar 

  13. Hu, K. S., Cherry, R. J., The effect of removal of the carboxyl-terminal peptide of bacteriorhodopsin on rotation diffusion of bacteriorhodopsin in DMPC vesicles, Acta Biophysica Sinica, 1986, 2: 159.

    Google Scholar 

  14. Cherry, R. J., Muller, U., Temperature-dependent aggregation of bacteriorhodopsin in dipalmitoyl- and dimyristoylphosphatidylcholine vesicles, J. Mol. Biol., 1978, 121: 283.

    Article  CAS  Google Scholar 

  15. Hui, S. W., Stewart, C. M., Cherry, R. J., Electron microscopic observation of the aggregation of membrane proteins in human erythrocyte by melittin, Biochemica et Biophysica Acta, 1990, 1023: 335.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunsheng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K., Wang, A., Morrison, I.E.G. et al. Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles. Sc. China Ser. B-Chem. 44, 663–669 (2001). https://doi.org/10.1007/BF02891692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02891692

Keywords

Navigation