Skip to main content
Log in

Natural and dark-induced nodule senescence in chickpea: nodule functioning and H2O2 scavenging enzymes

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

An investigation was carried out on chickpea (Cicer arietinum L.) cv. C-235 inoculated withRhizobium sp.Cicer strain cv 4 Azr. Nodule functioning was monitored at 15 d intervals starting from 45 days after sowing (DAS) and inoculation in order to study nodule development and senescence under natural and stress conditions (dark treatments of 18 and 66 h). Maximum rate of N2-fixation was observed between 50 - 60 DAS. After this acetylene reducing activity (ARA) fell and it was negligible 75 DAS. This decline in ARA with ageing of plants and nodules was accompanied by a decline in leghemoglobin content and greening of the nodules. When 60 % of the nodule tissue had turned green 75 DAS, a sharp increase in nodule peroxidase activity (3.7 fold) was observed whereas the catalase activity was reduced by 50 % in comparison with the control. The glutathione-reductase and ascorbate-peroxidase activity followed a trend parallel to that in N2-fixation, but the variation was much smaller. The changes in the total soluble carbohydrates, cytosolic proteins and nitrogen content per se were not expressive. Dark treatments induced premature senescence of the nodules as was evident from the marked decrease in ARA. However, the decline in leghemoglobin content was relatively small as compared to ARA. The changes in cytosolic proteins, total soluble carbohydrates, peroxidase activity, catalase activity, glutathione reductase activity and ascorbate peroxidase activity of nodules under dark-induced nodule senescence were almost parallel to those observed under natural senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARA:

acetylene reducing activity

ASC:

ascorbate peroxidase

DAS:

days after sowing

GSSG:

glutathione

lb:

leghemoglobin

TSC:

total soluble carbohydrates.

References

  • Aggarwal, N., Dabas, S., Swaraj, K.: Effect of source manipulation in symbiotic nitrogen fixation in chickpea(Cicer arietinum L.). - In: Dhir, K.K., Dua, I.S., Chark, K.S. (ed.): New Trends in Plant Physiology. Pp. 273–282. Today and Tomorrow’s Printer and Publishers, New Delhi 1991.

    Google Scholar 

  • Andreeva, I.N., Svaradzh, K., Chetverikov, A.G., Kozlova, G.I.: [Changes in ultrastructure and nitrogen fixing activity of root nodules and in the photosynthetic apparatus of soybean under conditions of prolonged dark influence]. - Fiziol. Rast.33: 252–263, 1986. [In Russ]

    CAS  Google Scholar 

  • Becana, M., Aparacio-Tejo, K., Peña, J., Aquirreolea, J., Sanchez-Díaz, M.: N2-fixation and leghemoglobin content during nitrate and water stress induced senescence ofMedicago sativa root nodules. - J. exp. Bot.37: 597–605, 1986.

    Article  CAS  Google Scholar 

  • Becana, M., Aparacio-Tejo, K., Sanchez-Diaz, M: Nitrate and hydrogen peroxide metabolism inMedicago sativa nodules and possible effect on leghemoglobin function. - Physiol. Plant.68: 65–69, 1988.

    Google Scholar 

  • Bethlenfalvay, G.J., Phillips, D.A.: Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation in legumes. - Plant Physiol.60: 419–421, 1977.

    PubMed  CAS  Google Scholar 

  • Ching, T.M., Hedke, S., Russell, S.A., Evans, H.J.: Energy state and dinitrogen fixation in soybean nodules of dark grown plants. - Plant Physiol.55: 796–798, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Dabas, S., Swaraj, K., Sheoran, I.S.: Effect of source removal on functioning of the nitrogen fixation of pigeonpea(Cajanus cajan L.) nodules. - J. Plant Physiol.132: 690–694, 1988.

    CAS  Google Scholar 

  • Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J.: Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. - Proc. nat. Acad. Sci. USA83: 3811–3815, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Dhandi, S.: Studies on Physiological Factors Affecting Root Nodule Functioning and Senescence in Pigeonpea (Cajanus cajan L. Millsp.). - Ph. D. Thesis, CCS Haryana Agricultural University, Hisar 1994.

    Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorke, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. - J. exp. Bot.32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Francis, A.J., Alexander, M.: Catalase activity and nitrogen-fixation in legume root nodules. - Can. J. Microbiol.18: 861–864, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, R.W.F., Burns, R.C., Holstein, R.D.: Application of C2H2-C2H4 assay for measurement of nitrogen fixation. - Soil Biol. Biochem.6: 47–81, 1973.

    Article  Google Scholar 

  • Ismande, J.: Rapid dinitrogen fixation during soybean pod filling enhances net photosynthetic output and seed yield: a new perspective. - Agron. J.81: 549–556, 1989.

    Google Scholar 

  • Lawn, R.J., Brun, W.A.: Symbiotic nitrogen fixation in soybean. 1. Effect of photosynthetic source sink manipulations. -Crop Sci.17: 11–16, 1974.

    Google Scholar 

  • Leshem, Y.Y.: Oxy free radicals and plant senescence. - What’s new Plant Physiol.12: 1–4, 1981.

    CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randal, R.J.: Protein measurements with the Folin phenol reagent. - J. biol. Chem.193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  • Murphy, P.M.: The effect of light and atmospheric carbon dioxide concentration on nitrogen fixation by herbage legumes. - Plant Soil95: 399–405, 1986.

    Article  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol.22: 1236–1241, 1981.

    Google Scholar 

  • Nelson, D.R., Belhille, R.J., Porter, C.A.: Role of nitrogen assimilation in seed development of soybean. -Plant Physiol.74: 128–133, 1984.

    PubMed  CAS  Google Scholar 

  • Nooden, L.D.: Integration of soybean pod development and monocarpic senescence. - Physiol. Plant62: 273–284, 1984.

    Article  CAS  Google Scholar 

  • Paau, A.S., Cowles, J.R.: Bacteroid distribution in alfalfa nodules upon dark induced senescence and subsequent partial rejuvenation. - Physiol. Plant.52: 43–46, 1981.

    Article  Google Scholar 

  • Pfeiffer, N.E., Malik, N.S.S., Wagner, F.W.: Reversible dark induced senescence of soybean root nodules. -Plant Physiol.71: 393–399, 1983.

    PubMed  CAS  Google Scholar 

  • Rainbird, R.M., Atkins, C.A., Pate, J.S., Sanford, P.: Significance of H2 evolution in the carbon and nitrogen economy of nodulated cowpea. - Plant Physiol.71: 122–127, 1983.

    PubMed  CAS  Google Scholar 

  • Romanov, V.I., Fedulova, N.G., Tchermenskaya, I.E., Schranko, V.I., Molchanov, M.I., Rretovich, W.L.: Metabolism of poly-β-hydroxybutyric acid in bacteroids ofRhizobium lupini in connection with nitrogen fixation and photosynthesis. - Plant Soil56: 379–390, 1980.

    Article  CAS  Google Scholar 

  • Roponen, I.: The effect of darkness on the leghemoglobin content and amino acid levels in root nodules of pea plants. - Physiol. Plant.23: 452–460, 1970.

    Article  CAS  Google Scholar 

  • Schweitzer, L.E., Harper, J.E.: Effect of light, dark and temperature on root nodule activity of soybean. - Plant Physiol.65: 51–66, 1980.

    PubMed  CAS  Google Scholar 

  • Schweitzer, L.E., Harper, J.E.: Effect of multiple factor source sink manipulation on nitrogen and carbon assimilation by soybean. - Plant Physiol.78: 57–60, 1985.

    PubMed  CAS  Google Scholar 

  • Shannon, L.M., Kay, E., Law, J.Y.: Peroxidase isoenzyme from horse radish roots. Isolation and physical properties. - J. Biol. Biochem.241: 2166–2173, 1966.

    CAS  Google Scholar 

  • Siddique, A.M., Bal, A.K.: Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies. - Plant Physiol.95: 898–899, 1991.

    Google Scholar 

  • Sinha, A.K.: Colorimetric assay of catalase. - Anal. Biochem.47: 389–394, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Swaraj, K., Dobrovo, P.N., Shiscenko, G., Zhiznevskaya, Y.A., Kozlova, G.I.: Effect of darkness on symbiotic nitrogen fixation in soybean. - Soviet Plant Physiol.32: 380–386, 1985.

    Google Scholar 

  • Swaraj, K., Kuhad, M.S., Garg, O.P.: Dark treatment effects on symbiotic nitrogen fixation and related processes inCicer arietinum L. (chickpea). - Environ, exp. Bot.26: 31–38, 1986.

    Article  Google Scholar 

  • Swaraj, K., Laura, J.S., Bishnoi, N.R.: Dark treatment effects on nitrogen fixation and enzymes associated with scavenging hydrogen peroxide in clusterbean nodules. - Plant Physiol. Biochem.32: 1–5, 1994.

    Google Scholar 

  • Swaraj, K., Sheoran, I.S., Garg, O.P.: Dark induced changes in functioning of root nodules ofVigna unguiculata. - Plant Physiol. Biochem.26: 79–84, 1988.

    CAS  Google Scholar 

  • Thimann, K.V.: The senescence of leaves. - In: Thimann, K.V. (ed.): Senescence in Plants. Pp. 86–115. CRC Press, Boca Raton 1980.

    Google Scholar 

  • Thomas, H., Stoddart, J.C.: Leaf senescence. - Annu. Rev. Plant Physiol.31: 83–111, 1980.

    Article  CAS  Google Scholar 

  • Vance, C.P., Heichel, G.H.: Carbon in N2-fixation: Limitation of exquisite adaptation. - Annu. Rev. Plant Physiol. Plant mol. Biol.42: 373–392, 1991.

    Article  CAS  Google Scholar 

  • Vessey, J.K.: Cultivar differences in assimilate partitioning and capacity to maintain N2-fixation rate in pea during pod filling.- Plant Soil139: 185–194, 1992.

    Article  CAS  Google Scholar 

  • Vikman, P.A., Vessey, J.K.: The decline in N2-fixation rate in common bean with the onset of pod- filling: fact or atifact. - Plant Soil147: 95–105, 1992.

    Article  CAS  Google Scholar 

  • Virtanen, A.I., Jorma, J., Linkola, H., Linnasalmi, A.: On the relation between nitrogen fixation and leghemoglobin content of leguminous root nodules. - Actachem. scand.1: 90–111, 1947.

    CAS  Google Scholar 

  • Virtanen, A.I., Miettinen, J.D.: Biological nitrogen fixation. - In: Steward, F.C. (ed.): Plant Physiology. Vol. III. Pp. 539–668. Academic Press, New York - London 1963.

    Google Scholar 

  • Wilson, D.O., Reisenauer, H.M.: Cobalt requirement of symbiotically grown alfalfa. - Plant Soil19: 364–373, 1963.

    Article  Google Scholar 

  • Wilson, R.F., Burton, J.W., Buck, J.A., Brim, C.A.: Studies on genetic male sterile soybean. 1. Distribution of plant carbohydrate and nitrogen during development. - Plant Physiol.61: 838–841, 1978.

    PubMed  CAS  Google Scholar 

  • Yemm, E.W., Willis, A.J.: The estimation of carbohydrates in plant extracts by anthrone. - Biochem. J.57: 508–514, 1954.

    PubMed  CAS  Google Scholar 

  • Zapata, F., Danso, S.K.A., Hardarson, G., Fried, M.: Time course of nitrogen fixation in field grown soybean using nitrogen-15 methodology. - Agron. J.79: 172–176, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheokand, S., Swaraj, K. Natural and dark-induced nodule senescence in chickpea: nodule functioning and H2O2 scavenging enzymes. Biol Plant 38, 545–554 (1996). https://doi.org/10.1007/BF02890605

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02890605

Additional key words

Navigation