Advertisement

Chinese Science Bulletin

, Volume 49, Supplement 1, pp 79–83 | Cite as

Thermal cracking ofn-octodecane and its geochemical significance

  • Yongqiang Xiong
  • Haizhu Zhang
  • Xinhua Geng
  • Ansong Geng
Articles

Abstract

The mechanism of carbon isotopic fractionation for gaseous hydrocarbons is revealed by investigating the residual liquid hydrocarbons in laboratory pyrolysates of n-octodecane. The results indicate that cracking and polymerization in the relatively low temperatures and disproportionation reactions leading to light hydrocarbons and polyaromatic hydrocarbons at high temperatures are probably causes for the carbon isotope reversal of gaseous hydrocarbons that is commonly observed in pyrolysis experiments. This study provides significant insight for quantitative modeling of natural gas δ13C values and aid in the identification and assessment of natural gases derived from oil cracking.

Keywords

n-octodecane pyrolydsis experiment stable carbon isotope gaseous hydrocarbons residual liquid hydrocarbons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horsfield, B., Schenk, H. J., Mills, N. et al., An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysis, Org. Geochem., 1992, 19: 191–204.CrossRefGoogle Scholar
  2. 2.
    Ungerer, P., Behar, F., Villalbe, M. et al., Kinetic modeling of oil cracking, Org. Geochem., 1988, 13: 857–868.CrossRefGoogle Scholar
  3. 3.
    Sackett, W. M., Nakaparksin, S., Dalrymple, D., Carbon isotope effects in methane production by thermal cracking, In Advances in Organic Geochemistry, 1966 (eds. Hobson, G. D., Speers, G. C.), Oxford: Pergamon Press, 1968, 37–53.Google Scholar
  4. 4.
    Sackett, W. M., Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments, Geochimica et Cosmochimica Acta, 1978, 42: 571–580.CrossRefGoogle Scholar
  5. 5.
    Cramer, B., Krooss, B. M., Littke, R., Modeling isotope fractionation during primary cracking of natural gas: A reaction kinetic approach, Chem. Geol., 1998, 149: 235–250.CrossRefGoogle Scholar
  6. 6.
    Lorant, F., Prinzhofer, A., Behar, F. et al., Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases, Chem. Geol., 1998, 147: 249–264.CrossRefGoogle Scholar
  7. 7.
    Xiong, Y. Q., Geng, A. S., Liu, J. Z., Kinetic simulating experiment combined with GC-IRMS analysis: Application to identification and assessment of coal-derived methane from Zhongba Gas Field (Sichuan Basin, China), Chemical Geology, 2004, 213(4): 325–338.CrossRefGoogle Scholar
  8. 8.
    Behar, F., Kressmann, S., Vandenbroucke, M. et al., Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking, Org. Geochem., 1991, 19: 173–189.CrossRefGoogle Scholar
  9. 9.
    Behar, F., Vandenbroucke, M., Tang, Y. et al., Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation, Org. Geochem., 1997, 26(5/6): 321–339.CrossRefGoogle Scholar
  10. 10.
    Frank, D. J., Sackett, W. M., Kinetic isotope effects in the thermal cracking of neopentane, Geochimica et Cosmochimica Acta, 1969, 33: 811–820.CrossRefGoogle Scholar
  11. 11.
    Behar, F., Budzinski, H., Vandenbroucke, M. et al., Methane generation from oil cracking: kinetics of 9-methylphenanthrene cracking and composition with other pure compounds and oil fractions, Energy & Fuels, 1999, 13: 471–481.CrossRefGoogle Scholar
  12. 12.
    Lorant, F., Behar, F., Vandenbroucke, M., Methane generation from methylated aromatics: kinetic study and carbon isotope modeling, Energy & Fuels, 2000, 14: 1143–1155.CrossRefGoogle Scholar
  13. 13.
    Xiong, Y. Q., Geng, A. S., Wang, Y. P. et al., Kinetic simulating experiment on the secondary hydrocarbon generation of kerogen, Science in China, Series D, 2002, 45(1): 13–20.Google Scholar
  14. 14.
    Tang, Y., Perry, J. K., Jenden, P. D. et al., Mathematical modeling of stable carbon isotope ratios in natural gases, Geochimica et Cosmochimica Acta, 2000, 64: 2673–2687.CrossRefGoogle Scholar
  15. 15.
    Cramer, B., Faber, E., Gerling, P. et al., Reaction kinetics of stable carbon isotopes in natural gas-insights from dry, open system pyrolysis experiments, Energy & Fuels, 2001, 15: 517–532.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Yongqiang Xiong
    • 1
  • Haizhu Zhang
    • 1
  • Xinhua Geng
    • 1
  • Ansong Geng
    • 1
  1. 1.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations