Virchows Archiv B

, Volume 20, Issue 1, pp 329–342 | Cite as

Cumulative indices of DNA synthesizing myocytes in different compartments of the working myocardium and conductive system of the rat’s heart muscle following extensive left ventricle infarction

  • P. P. Rumyantsev
  • Anvar M. Kassem


Ten successive3H-thymidine injections at 12h intervals (which is a little shorter than the adult heart myocyte S phase) were performed for labeling of the majority of cardiac myocytes synthesizing DNA at any moment of such a 5 days experiment. In the hearts of control unoperated rats ten-fold repeated3H-thymidine administration results in labeling of 2–3% myocyte nuclei, in both atria, ca. 1% of the specialized muscle cell nuclei in the atrioventricular conductive system, only occasional muscle cells being labeled in the working ventricular myocardium. When ten successive3H-thymidine injections were made between the 5th and 10th days following extended left ventricle infarction, the percentage of labeled myocytes in left and right atria reaches, respectively, 51.4±4.4% and 34.7±3.6%. In the left ventricle labeled muscle nuclei are accumulated predominantly (9.3±2.1%) within the thin subepicardial layer of the surviving myofibers, while myofibers located in other perinecrotic areas contained only 1.3±0.5% labeled muscle nuclei. The number of these nuclei in the atrioventricular system remains at the level observed in control hearts (up to 2%), approaching closely the zero level in the working myocardium of both the ventricles and interventricular septum, located at the considerable distance from the infarcted region. When similar experiments with ten-fold repeated3H-thymidine injections were performed between 15th and 20th post-infarction days the number of labeled myocyte nuclei was found to be reduced 4–6 times in atria, being changed rather a little in the perinecrotic ventricular myocardium and in the specialized myocardium of the atrioventricular system. Some possible reasons of the observed differences in the proliferative behaviour of cardiac myocytes in terms of their topology and/or specialization are discussed


Left Atrium Cardiac Myocytes Ventricular Myocytes Interventricular Septum Mitotic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, H.-W.: Der Zellersatz insbesonders an den parenchymatösen Organen. Verh. dtsch. Ges. Path.50, 15–51 (1966)Google Scholar
  2. Bajusz, E., Jasmin, G.: Histochemical studies on the myocardium following experimental interference with coronary circulation in the rat. 1. Occlusion of coronary artery. Acta histochem. (Jena)18, 222–237 (1964)Google Scholar
  3. Bencosme, S. A., Berger, G. M.: Specific granules in mammalian and non-mammalian vertebrate cardiocytes. In: Methods and achievements in experimental pathology. Vol. 5, p. 173 to 213. Basel: Karger 1971Google Scholar
  4. Berger, G. M., Rona, I.: Functional and fine structural heterogeneity of atrial cardiocytes. In: Methods and achievements in experimental pathology, Vol. 5, p. 540–590. Basel: Karger 1971Google Scholar
  5. Bullough, W. S.: The evolution of differentiation. London and New York: Academic Press 1967Google Scholar
  6. Burholt, D. R., Schultze, B., Maurer, W.: Autoradiographic confirmation of the mitotic division of the every mouse jejunal crypt cell labelled with H3-thymidine. Evidence against the existence of cells synthesizing metabolic DNA. Cell Tiss. Kinet.6, 229–237 (1973)Google Scholar
  7. Challice, C. E.: Functional morphology of the specialized tissues of the heart. In: Methods and achievements in experimental pathology, Vol. 5, pp. 121–172. Basel: Karger 1971Google Scholar
  8. Claycomb, W. C.: Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear and cytoplasmic deoxyribonucleic acid polymerase activity. J. biol. Chem.250, 3229–3235 (1975)PubMedGoogle Scholar
  9. Doyle, C. M., Zak, R., Fishman, D. A.: The correlation of DNA synthesis and DNA polymerase activity in the developing chick heart. Develop. Biol.37, 133–145 (1974)PubMedCrossRefGoogle Scholar
  10. Epifanova, O. I., Terskikh, V. V.: On the resting periods in the cell life cycle. Cell Tiss. Kinet.2, 75–94 (1969)Google Scholar
  11. Erokhina, I. L.: Proliferation dynamics of cellular elements in the differentiating mouse myocard. [In Russian.] Thsitologia10, 1391–1409 (1968)Google Scholar
  12. Erokhina, I. L., Rumyantsev, P. P.: The autoradiographic study of the synthesis of DNA and RNA in cells of the conductive system of the developing rodent hearts. In: Functional morphology, genetics and biochemistry of the cell (A. S. Troshin ed.), pp. 45–48. Leningrad: Institute of Cytology 1974 [in Russian]Google Scholar
  13. Forssmann, W. G., Girardier, L.: A study of the T system in rat heart. J. Cell Biol.44, 1–19 (1970)PubMedCrossRefGoogle Scholar
  14. Gillette, P. C., Claycomb, W. C.: Thymidine kinase activity in cardiac muscle during embryonic and postnatal development. Biochem. J.142, 685–690 (1974)PubMedGoogle Scholar
  15. Goss, R. J.: Hypertrophy versus hyperplasia. Science153, 1615–1620 (1966)PubMedCrossRefGoogle Scholar
  16. Gossrau, R.: Über das Reizleitungsystem der Vögel. Histochemische und elektronmikroskopische Untersuchungen. Histochemie13, 111–159 (1968)PubMedCrossRefGoogle Scholar
  17. Grove, D., Zak, R., Nair, K. G., Achenbrenner, V.: Biochemical correlates of cardiac hypertrophy. 4. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circulat. Res.25, 473–485 (1969)PubMedGoogle Scholar
  18. Katinas, G. S.: Estimation of standard arithmetical mean error at the Poisson type of distribution of the sign within the organism and at normal one—within the population (in Russian). Arch. Anat. Histol. Embryol.62, 101–106 (1972)Google Scholar
  19. Klinge, O.: Proliferation und Regeneration am Myocard. Lichtmikroskopische und autoradiographische Untersuchungen am unversehrten und infarzierten Herzmuskel erwachsener Ratten. Z. Zellforsch.80, 488–517 (1967)PubMedCrossRefGoogle Scholar
  20. McConnachie, H. F., Enesco, M., Leblond, C. P.: The mode of increase in the number of skeletal muscle nuclei in the postnatal rat. Amer. J. Anat.114, 235–251 (1964)CrossRefGoogle Scholar
  21. McNutt, N. S., Fawcett, D. W.: The ultrastructure of myocardium. II. Atrial muscle. J. Cell Biol.42, 46–67 (1969)PubMedCrossRefGoogle Scholar
  22. Oberpriller, J., Oberpriller, J. C.: Mitosis in adult newt ventricle. J. Cell Biol.49, 560–563 (1971)CrossRefGoogle Scholar
  23. Oberpriller, J., Oberpriller, J. C.: Response of the adult newt ventricle to injury. J. exp. Zool.187, 249–260 (1974)PubMedCrossRefGoogle Scholar
  24. Page, E., Polimeni, P., Zak, R., Earley, J., Johnson, M.: Myofibrillar mass in rat and rabbit muscle: correlation of microchemical with stereological measurements in normal and hypertrophic hearts. Circulat. Res.30, 430–439 (1972)PubMedGoogle Scholar
  25. Pelc, S. R.: Labelling of DNA and cell division in so called non-dividing tissues. J. Cell Biol.22, 21–28 (1964)PubMedCrossRefGoogle Scholar
  26. Pfitzer, P.: Polyploide Zellkerne im Herzmuskel von Affen. Virchows Arch. Abt. B Zellpath.10, 268–274 (1972a)Google Scholar
  27. Pfitzer, P.: Die Kariologischen Grundlagen der Hypertrophie. Verh. Dtsch. Ges. Kreisl.-Forsch. 38. Herzhypertrophie, 5, S. 23–34. Darmstadt: Dr. Dietrich Steinkopff 1972bGoogle Scholar
  28. Pfitzer, P., Capurso, A.: Der DNS-Gehalt der Zellkerne im Herzohr des Menschen. Virchows Arch. Abt. B Zellpath.5, 254–267 (1970)Google Scholar
  29. Rumyantsev, P. P.: Autoradiographic study on the synthesis of DNA, RNA and proteins in normal cardiac muscle cells and those changed by experimental injury. Folia histochem. cytochem.4, 397–424 (1966)Google Scholar
  30. Rumyantsev, P. P.: DNA synthesis and hyperplasia of the muscle cells during myocardial infarction. In: Transact. V Confer. Pathol. Anat. Latvia, pp. 156–164. Riga 1970a [in Russian]Google Scholar
  31. Rumyantsev, P. P.: DNA synthesis and mitosis in atrial myocytes of rats with aortal stenosis. Experientia (Basel)26, 773–774 (1970b)Google Scholar
  32. Rumyantsev, P. P.: Cytological basis of myocardial regeneration. [in Russian.] Abstr. Sympos. Regeneration of Myocard, pp. 10–13, Erevan (1970c)Google Scholar
  33. Rumyantsev, P. P.: Post-injury DNA synthesis, mitosis and ultrastructural reorganization of adult frog cardiac myocytes. An electron microscopic autoradiographic study. Z. Zellforsch.139, 431–450 (1973)PubMedCrossRefGoogle Scholar
  34. Rumyantsev, P. P.: Ultrastructural reorganization, DNA synthesis and mitotic division of myocytes in atria of rats with left ventricle infarction. Virchows Arch. Abt. B Zellpath.15, 357–378 (1974)Google Scholar
  35. Rumyantsev, P. P., Mirakyan, V. O.: Reactive synthesis of DNA and mitotic division in atrial heart muscle cells following left ventricle infarction. Experientia (Basel)24, 1234–1235 (1968a)Google Scholar
  36. Rumyantsev, P. P., Mirakyan, V. O.: Increased activity of DNA synthesis and mitoses in atrial muscle cells under ventricular myocard infarction and local injuries of auricles. Thsitologia10, 1276–1287 (1968b) [in Russian]Google Scholar
  37. Sandritter, W., Scomazzoni, G.: Deoxyribonucleic acid content (Feulgen photometry) and dry weight (interference microscopy) of normal and hypertrophic heart muscle fibers. Nature (Lond.)202, 100–101 (1964)CrossRefGoogle Scholar
  38. Sarkissov, D. S.: Regeneration and its clinical significance. [In Russian]. Moscow: “Medicine” 1970Google Scholar
  39. Schiebler, T. H., Doerr, W.: Orthologie des Reizleitungssystems. In: Das Herz des Menschen, pp. 165–227. Stuttgart: Thieme 1963Google Scholar
  40. Selye, H., Bajusz, E., Grasso, S., Mendell, P.: Simple techniques of surgical occlusion of coronary vessels in the rat. Angiology2, 398–407 (1960)CrossRefGoogle Scholar
  41. Stöcker, E., Heine, W.-D.: Regeneration of liver parenchyma under normal and pathological conditions. Beitr. path. Anat.144, 400–408 (1971)Google Scholar
  42. Stöcker, E., Schultze, B., Heine, W.-D., Liebscher, H.: Wachstum und Regeneration in parenchimatosen Organen der Ratte. Autoradiographische Untersuchungen mit3H-Thymidine. Z. Zellforsch.125, 306–331 (1972)PubMedCrossRefGoogle Scholar
  43. Sulima, V. I.: On the regeneration of the reptilian myocardium following various types of the heart wall injury. [In Russian.] Arch. Anat. Histol. Embryol.55, 56–63 (1968)Google Scholar
  44. Trysted, G., Munch-Petersen, M., Cloos, L.: DNA-polymerase activity in phytohaemagglutinine stimulated and non-stimulated human lymphocytes. Exp. Cell Res.77, 415–427 (1973)CrossRefGoogle Scholar
  45. Voronzowa, M. A., Liozner, L. D.: Physiological regeneration. [In Russian.] Moscow: Sovietskaya Nauka 1955Google Scholar
  46. Zak, R.: Cell proliferation during cardiac growth. Amer. J. Cardiol.31, 211–219 (1973)PubMedCrossRefGoogle Scholar
  47. Zak, R.: Development and proliferative capacity of cardiac muscle cells. Circulat. Res., Suppl. II,34 and35, p. II/17-II/26 (1974)Google Scholar
  48. Zhinkin, L. N., Zawarzin, A. A., Lebedeva, G. S., Andreeva, L. F.: The usage of liquid emulsion for preparing of radioautographs with H3-thymidine and C14-adenine. [In Russian.] Thsitologia3, 479–481 (1961)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • P. P. Rumyantsev
    • 1
  • Anvar M. Kassem
    • 1
  1. 1.Institute of Cytology of the Academy of Sciences of the USSRLeningradUSSR

Personalised recommendations