Virchows Archiv B

, Volume 20, Issue 1, pp 155–167 | Cite as

Ultrastructure of experimental xanthogranulomatous pyelonephritis

  • C. Povýšil


The ultrastructure of xanthogranulomas developing during obstructive suppurative pyelonephritis was studied in rats with a permanent ligature of one ureter and an intravenous injection of E. coli suspension. The xanthogranulomas consisted of macrophages with numerous phagolysosomes containing rests of phagocytosed polymorphonuclear leucocytes and bacteria. Lipids identifiable as triglycerides were found in such cells particularly as isolated intracytoplasmic droplets and, less frequently, within the phagolysosomes. The source of isolated intracytoplasmic lipid droplets within the macrophages has remained obscure. Their origin in the macrophages by synthesis could not be excluded, similarly as in the polymorphonuclear leucocytes.

PAS positive cells occurring as late as 2 months after the beginning of the experiment at the periphery of xanthogranulomas contained multiple intracytoplasmic vacuoles, most probably phagolysosomes. These cells, with high probability the oldest ones of the macrophagic population in the xanthogranulomas were virtually devoid of lipid droplets.

Key words

Xanthogranuloma Pyelonephritis Ultrastructure Macrophages Lysosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cohn, Z. A., Hirsch, J. G., Fedorko, M. E.: The in vitro differentiation of mononuclear phagocytes. IV. The ultrastructure of macrophage differentiation in the peritoneal cavity and in culture. J. exp. Med.123, 747–757 (1966)PubMedCrossRefGoogle Scholar
  2. Coimbra, A., Lopez-Vaz, A.: The presence of lipid droplets and the absence of stable sudanophilia in osmium-fixed human leucocytes. J. Histochem. Cytochem.19, 551–557 (1971)PubMedGoogle Scholar
  3. Daems, W. Th., Brederoo, P.: Electron microscopic studies on the structure, phagocytic properties and peroxydatic activity of resident and exsudate peritoneal macrophages in the guinea pig. Z. Zellforsch.144, 247–297 (1973)PubMedCrossRefGoogle Scholar
  4. Day, A. J., Fidge, H. N.: Conversion of (1–14C) glucose to lipid by macrophages. Biochim. biophys. Acta. Lipids and lipid metabolism106 19–24 (1965)CrossRefGoogle Scholar
  5. Dumont, A.: Ultrastructural study of the maturation of peripheral macrophages in the hamsters. J. Ultrastruct Res.29, 191–209 (1969)PubMedCrossRefGoogle Scholar
  6. Duve de, Ch.: Le lysosomes. La Recherche49, 815–826 (1974)Google Scholar
  7. Furth, R. van, Hirsch, J. G., Fedorko, M. E.: Morphology and peroxidase cytochemistry promonocyte, monocytes and macrophages. J. exp. Med.132, 794–812 (1970)PubMedCrossRefGoogle Scholar
  8. Golstone, A., Koenig, H.: Lysosomal hydrolases as glycoproteins. Life Sci.9, 1341–1350 (1970)CrossRefGoogle Scholar
  9. Hess, M. W., Roos, B., Cottier, H.: Kinetics of peripheral macrophages: Facts and working hypothesis. Ann. Inst. Pasteur120, 367–371 (1971)Google Scholar
  10. Hirsch, J. G., Fedorko, M. E.: Morphology of mouse mononuclear phagocytes. In: Furth, R. van, Mononuclear phygocytes, p. 7–28. Oxford and Edinburgh: Blackwell Scientific publication 1970Google Scholar
  11. Karnovsky, M. L., Simmons, S., Glass, E. A., Shafe, A. W., D’Arcy Hart, P.: Metabolism of macrophages. In: Furth, R. van, Mononuclear phagocytes, p. 103–116. Oxford and Edinburgh: Blackwell Scientific publication 1970Google Scholar
  12. Morgan, C., Rosenkranz, H. S., Carr, H. S., Rose, H. M.: Electron microscopy of chloramphenicol-treated E. coli. J. Bact.93, 1987–2002 (1967)PubMedGoogle Scholar
  13. Nichols, B. A., Bainton, B. F.: Differentiation of human monocytes in bone marrow and blood. Lab. Invest.29, 27–40 (1973)PubMedGoogle Scholar
  14. Povýšil, C., Koníčková, L.: Experimental xanthogranulomatous pyelonephritis. Invest. Urol.9, 313–318 (1972)PubMedGoogle Scholar
  15. Robineaux, R., Anteunis, A., Bona, C.: Ultrastructure des macrophages de cobaye. Ann. Inst. Pasteur4534, 329–336 (1971)Google Scholar
  16. Scott, R. B., Cooper, V. W.: Leucocyte glycogen response in inflammatory exudates. Brit. J. Haemat.26, 485–495 (1974)PubMedCrossRefGoogle Scholar
  17. Tan, K. H., Heptinstall, R. H.: Experimental pyelonephritis. A light and electron microscopic study of the PAS-positive interstitial cell. Lab. Invest.20, 62–69 (1969)PubMedGoogle Scholar
  18. Walker, W. S.: Macrophage functional heterogeneity in the in vitro induced immune response. Nature (Lond.) New Biol.229, 211–212 (1971)Google Scholar
  19. West, J., Morton, D. J., Esmann, V., Stjernholm, R. L.: Carbohydrate metabolism in leucocytes. VII. Metabolic activities of the macrophage. Arch. Biochem. Biophys.124, 85–90 (1968)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • C. Povýšil
    • 1
  1. 1.2nd Department of Pathology, Faculty of General MedicineCharles’ UniversityPragueCzechoslovakia

Personalised recommendations