Skip to main content
Log in

Correlations between the ages ofAlnus host species and the genetic diversity of associated endosymbioticFrankia strains from nodules

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Nodule samples were collected from four alder species:Alnus nepalensis, A. sibirica, A. tinctoria andA. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS betweennifD andnifK genes was directly applied to unculturedFrankia strains in the nodules. A total of 21 restriction patterns were obtained. TheFrankia population in the nodules ofA. nepalensis had the highest genetic diversity among all fourFrankia populations; by contrast, the population in the nodules ofA. mandshurica had the lowest degree of divergence; the ones in the nodules ofA. sibirica andA. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated thatFrankia strains fromA. sibirica andA. tinctoria had a close genetic relationship.Frankia strains fromA. nepalensis might be the ancestor ofFrankia strains infecting otherAlnus species. From these results and the inference of the ages ofAlnus host species, it is deduced that there was a co-evolution betweenAlnus and its microsymbiontFrankia in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Normand, P., Orso, S., Cournoyer, B. et al., Molecular phylogeny of genusFrankia and related genera and emendation of the family Frankiaceae, Int. J. Syst. Bacteriol., 1996, 46: 1–9.

    Article  PubMed  CAS  Google Scholar 

  2. Guan, C., Pawlowski, P., Bisseling, T., Interaction betweenFrankia and actinorhizal plants, Subcelluar Biochem., 1998, 29: 165–189.

    CAS  Google Scholar 

  3. Lumini, E., Bosco, M., Polymerase chain reaction-restriction fragment length polymorphisms for assessing and increasing biodiversityof Frankia culture collections, Can. J. Bot., 1999, 77: 1261–1269.

    Article  CAS  Google Scholar 

  4. Chen, Z. D., Origin and disperse of Betulaceae, in the Geography of Spermatophytic Families and Genera (ed. Lu, A. M.), Beijing: Science Press, 1999, 236–258.

    Google Scholar 

  5. Chen, Z. D., Manchester, S. R., Sun, H. Y., Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany, Am. J. Bot., 1999, 86: 1168–1181.

    Article  PubMed  CAS  Google Scholar 

  6. Xiong, Z., Li, W. J., Zhang, Z. Z. et al., The influence of altitude on the genetic of microsymbionts ofAlnus nepalensis-Frankia, Chin. J. Southwest Forest. Coll., 2001, 21: 205–209.

    Google Scholar 

  7. Wu, S. H., Zhang, H. W., Xiong, Z., Biodiversity ofFrankia strains in nodules fromAlnus andHippophae by ARDRA, Chin. J. App. Ecol., 2001, 12: 883–886.

    Google Scholar 

  8. Nalin, R., Normand, P., Domenach, A. M., Distribution and N2-fixing activity ofFrankia strains in relation to soil depth, Physiol. Plantarum, 1997, 99: 732–738.

    Article  CAS  Google Scholar 

  9. Varghese, R., Chauhan, V., Misra, A., Hypervariable spacer regions are good sites for developing specific PCR-RFLP markers and PCR primers for screening actinorhizal symbionts, J. Bioscience, 2003, 28: 437–442.

    Article  CAS  Google Scholar 

  10. Hahn, D., Nickel, A., Dawson, J., AssessingFrankia populations in plants and soil using molecular methods, FEMS Microbiol. Ecol., 1999, 29: 215–227.

    Article  CAS  Google Scholar 

  11. Li, H., Guo, H. J., Dao, Z. L., Flora of Gaoligong Mountains, Beijing: Science Press, 2000.

    Google Scholar 

  12. Hao, Z. Q., Yu, D. Y., Deng, H. B. et al., Study on complexity of plant communities at different altitudes on the North Slope of Changbai Mountain, Chin. J. Forest. Res., 2002, 13: 17–20.

    Google Scholar 

  13. Ritchie, N. J., Myrold, D. D., Phylogenetic placement of unculturedCeanothus microsymbionts using 16S rRNA gene sequences, Can. J. Bot, 1999, 77: 1208–1213.

    Article  CAS  Google Scholar 

  14. Mitchell, L. G., Bodenteich, A., Merril, C. R., Silver staining of DNA, in Basic DNA and RNA Protocols (ed. Harwood, A. J., Sheng, X. Y.), Beijing: Science Press, 2002, 67–71.

    Google Scholar 

  15. Yeh, F. C., Yang, R. C., Royle, T. B. et al., POPGENE V1.31, http://www.ualberta.ca/-fyeh, 1997.

  16. Buntjer, J. B., PHYTOOL (Phylogenetic Computer Tool) version 1.23, Laboratory of Plant Breeding, Wageningen University, Netherlands, 1997–2000.

    Google Scholar 

  17. Felsenstein, J., PHYLP (Phylogeny Inference Package) version 3.5c, Department of Genetics, University of Washington, Seattle, 1993.

    Google Scholar 

  18. Page, R. D. M., TREEVIEW: An application to display phylogenetic trees on personal computers, Comp. Ap. Biosciences, 1996, 12: 357–358.

    CAS  Google Scholar 

  19. Qian, W., Ge, S., Analyses of population genetic structure by using dominant markers, Acta Genet. Sinica, 2001, 28: 244–255.

    CAS  Google Scholar 

  20. Zou, Y. P., Ge, S., Wang, X.D., Molecular Fingerprint in Systematic and Evolution Botany, Beijing: Science Press, 2001, 190.

    Google Scholar 

  21. Varghese, R., Chauhan, V., Misra, A., Evolutionary implication of nucleotide sequence relatedness betweenAlnus nepalensis andAlnus glutinosa and also between correspondingFrankia microsybionts, Plant Soil, 2003, 254: 219–227.

    Article  CAS  Google Scholar 

  22. Navarro, E., Bousquent, J., Moiroud, A. et al., Molecular phylogenyof Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequence, Plant Soil, 2003, 245: 207–217.

    Article  Google Scholar 

  23. Jeong, S. C., Ritchie, N. J., Myrold, D. D., Molecular phylogenies of plants andFrankia support multiple origins of actinorhizal symbioses, Mol. Phylogenet. Evol., 1999, 13: 493–503.

    Article  PubMed  CAS  Google Scholar 

  24. Simonet, P., Navarro, E., Rouvier, C., Co-evolution betweenFrankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal, Environ. Microb., 1999, 1: 525–533.

    Article  CAS  Google Scholar 

  25. Navarro, E., Jaffre, T., Gauthier, D. et al., Distribution ofGymnostama spp. microsymbioticFrankia strains in New Caledonia is related to soil type and to host-plant species, Mol. Ecol., 1999, 8: 1781–1788.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Zhang, C., Xiong, Z. et al. Correlations between the ages ofAlnus host species and the genetic diversity of associated endosymbioticFrankia strains from nodules. Sci. China Ser. C.-Life Sci. 48 (Suppl 1), 76–81 (2005). https://doi.org/10.1007/BF02889804

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889804

Keywords

Navigation