Science in China Series C: Life Sciences

, Volume 48, Supplement 1, pp 76–81 | Cite as

Correlations between the ages ofAlnus host species and the genetic diversity of associated endosymbioticFrankia strains from nodules

  • Dai Yumei 
  • Chenggang Zhang
  • Zhi Xiong
  • Zhongze Zhang


Nodule samples were collected from four alder species:Alnus nepalensis, A. sibirica, A. tinctoria andA. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS betweennifD andnifK genes was directly applied to unculturedFrankia strains in the nodules. A total of 21 restriction patterns were obtained. TheFrankia population in the nodules ofA. nepalensis had the highest genetic diversity among all fourFrankia populations; by contrast, the population in the nodules ofA. mandshurica had the lowest degree of divergence; the ones in the nodules ofA. sibirica andA. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated thatFrankia strains fromA. sibirica andA. tinctoria had a close genetic relationship.Frankia strains fromA. nepalensis might be the ancestor ofFrankia strains infecting otherAlnus species. From these results and the inference of the ages ofAlnus host species, it is deduced that there was a co-evolution betweenAlnus and its microsymbiontFrankia in China.


Frankia Alnus genetic diversity co-evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Normand, P., Orso, S., Cournoyer, B. et al., Molecular phylogeny of genusFrankia and related genera and emendation of the family Frankiaceae, Int. J. Syst. Bacteriol., 1996, 46: 1–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Guan, C., Pawlowski, P., Bisseling, T., Interaction betweenFrankia and actinorhizal plants, Subcelluar Biochem., 1998, 29: 165–189.Google Scholar
  3. 3.
    Lumini, E., Bosco, M., Polymerase chain reaction-restriction fragment length polymorphisms for assessing and increasing biodiversityof Frankia culture collections, Can. J. Bot., 1999, 77: 1261–1269.CrossRefGoogle Scholar
  4. 4.
    Chen, Z. D., Origin and disperse of Betulaceae, in the Geography of Spermatophytic Families and Genera (ed. Lu, A. M.), Beijing: Science Press, 1999, 236–258.Google Scholar
  5. 5.
    Chen, Z. D., Manchester, S. R., Sun, H. Y., Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany, Am. J. Bot., 1999, 86: 1168–1181.PubMedCrossRefGoogle Scholar
  6. 6.
    Xiong, Z., Li, W. J., Zhang, Z. Z. et al., The influence of altitude on the genetic of microsymbionts ofAlnus nepalensis-Frankia, Chin. J. Southwest Forest. Coll., 2001, 21: 205–209.Google Scholar
  7. 7.
    Wu, S. H., Zhang, H. W., Xiong, Z., Biodiversity ofFrankia strains in nodules fromAlnus andHippophae by ARDRA, Chin. J. App. Ecol., 2001, 12: 883–886.Google Scholar
  8. 8.
    Nalin, R., Normand, P., Domenach, A. M., Distribution and N2-fixing activity ofFrankia strains in relation to soil depth, Physiol. Plantarum, 1997, 99: 732–738.CrossRefGoogle Scholar
  9. 9.
    Varghese, R., Chauhan, V., Misra, A., Hypervariable spacer regions are good sites for developing specific PCR-RFLP markers and PCR primers for screening actinorhizal symbionts, J. Bioscience, 2003, 28: 437–442.CrossRefGoogle Scholar
  10. 10.
    Hahn, D., Nickel, A., Dawson, J., AssessingFrankia populations in plants and soil using molecular methods, FEMS Microbiol. Ecol., 1999, 29: 215–227.CrossRefGoogle Scholar
  11. 11.
    Li, H., Guo, H. J., Dao, Z. L., Flora of Gaoligong Mountains, Beijing: Science Press, 2000.Google Scholar
  12. 12.
    Hao, Z. Q., Yu, D. Y., Deng, H. B. et al., Study on complexity of plant communities at different altitudes on the North Slope of Changbai Mountain, Chin. J. Forest. Res., 2002, 13: 17–20.Google Scholar
  13. 13.
    Ritchie, N. J., Myrold, D. D., Phylogenetic placement of unculturedCeanothus microsymbionts using 16S rRNA gene sequences, Can. J. Bot, 1999, 77: 1208–1213.CrossRefGoogle Scholar
  14. 14.
    Mitchell, L. G., Bodenteich, A., Merril, C. R., Silver staining of DNA, in Basic DNA and RNA Protocols (ed. Harwood, A. J., Sheng, X. Y.), Beijing: Science Press, 2002, 67–71.Google Scholar
  15. 15.
    Yeh, F. C., Yang, R. C., Royle, T. B. et al., POPGENE V1.31,, 1997.Google Scholar
  16. 16.
    Buntjer, J. B., PHYTOOL (Phylogenetic Computer Tool) version 1.23, Laboratory of Plant Breeding, Wageningen University, Netherlands, 1997–2000.Google Scholar
  17. 17.
    Felsenstein, J., PHYLP (Phylogeny Inference Package) version 3.5c, Department of Genetics, University of Washington, Seattle, 1993.Google Scholar
  18. 18.
    Page, R. D. M., TREEVIEW: An application to display phylogenetic trees on personal computers, Comp. Ap. Biosciences, 1996, 12: 357–358.Google Scholar
  19. 19.
    Qian, W., Ge, S., Analyses of population genetic structure by using dominant markers, Acta Genet. Sinica, 2001, 28: 244–255.Google Scholar
  20. 20.
    Zou, Y. P., Ge, S., Wang, X.D., Molecular Fingerprint in Systematic and Evolution Botany, Beijing: Science Press, 2001, 190.Google Scholar
  21. 21.
    Varghese, R., Chauhan, V., Misra, A., Evolutionary implication of nucleotide sequence relatedness betweenAlnus nepalensis andAlnus glutinosa and also between correspondingFrankia microsybionts, Plant Soil, 2003, 254: 219–227.CrossRefGoogle Scholar
  22. 22.
    Navarro, E., Bousquent, J., Moiroud, A. et al., Molecular phylogenyof Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequence, Plant Soil, 2003, 245: 207–217.CrossRefGoogle Scholar
  23. 23.
    Jeong, S. C., Ritchie, N. J., Myrold, D. D., Molecular phylogenies of plants andFrankia support multiple origins of actinorhizal symbioses, Mol. Phylogenet. Evol., 1999, 13: 493–503.PubMedCrossRefGoogle Scholar
  24. 24.
    Simonet, P., Navarro, E., Rouvier, C., Co-evolution betweenFrankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal, Environ. Microb., 1999, 1: 525–533.CrossRefGoogle Scholar
  25. 25.
    Navarro, E., Jaffre, T., Gauthier, D. et al., Distribution ofGymnostama spp. microsymbioticFrankia strains in New Caledonia is related to soil type and to host-plant species, Mol. Ecol., 1999, 8: 1781–1788.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Dai Yumei 
    • 1
    • 2
  • Chenggang Zhang
    • 1
  • Zhi Xiong
    • 3
  • Zhongze Zhang
    • 1
  1. 1.Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.School of Forest ResourcesSouthwest Forestry CollegeKunmingChina

Personalised recommendations